https://github.com/hongwang01/InDuDoNet/blob/main/CLINIC_metal/preprocess_clinic/preprocessing_clinic.py
提供了LI的代码。
NMAR代码:
https://github.com/yanbozhang007/CNN-MAR/blob/ba525c75efdcf9d35889c749e66f49e4445b187b/evaluation/nmar.m
借助ChatGPT改写为python代码
# Given clinical Xma, generate data,including: XLI, M, Sma, SLI, Tr for infering InDuDoNet
import nibabel
import numpy as np
import os
from scipy.ndimage import gaussian_filter
from sklearn.cluster import KMeans
from scipy.interpolate import interp1d
from .utils import get_config
from .build_gemotry import initialization, imaging_geo
import PIL
from PIL import Image
config = get_config('CLINIC_metal/preprocess_clinic/dataset_py_640geo.yaml')
CTpara = config['CTpara'] # CT imaging parameters
mask_thre = 2500 / 1000 * 0.192 + 0.192 # taking 2500HU as a thresholding to segment the metal region
param = initialization()
ray_trafo, FBPOper = imaging_geo(param) # CT imaging geometry, ray_trafo is fp, FBPoper is fbp
allXma = []
allXLI = []
allM = []
allSma = []
allSLI = []
allTr = []
allaffine = []
allfilename=[]
miuWater = 0.192
miuAir = 0
starpoint = np.array([miuAir, miuWater, 2 * miuWater])
# process and save all the to-the-tested volumes
def clinic_input_data(test_path):
for file_name in os.listdir(test_path):
file_path = test_path+'/'+file_name
img = nibabel.load(file_path)
imag = img.get_fdata() # imag with pixel as HU unit
affine = img.affine
allaffine.append(affine)
num_s = imag.shape[2]
M = np.zeros((CTpara['imPixNum'], CTpara['imPixNum'], num_s), dtype='float32')
Xma = np.zeros_like(M)
XLI = np.zeros_like(M)
Tr = np.zeros((CTpara['sinogram_size_x'], CTpara['sinogram_size_y'], num_s), dtype='float32')
Sma = np.zeros_like(Tr)
SLI = np.zeros_like(Tr)
for i in range(70, num_s):
image = np.array(Image.fromarray(imag[:,:,i]).resize((CTpara['imPixNum'], CTpara['imPixNum']), PIL.Image.BILINEAR))
image[image < -1000] = -1000
image = image / 1000 * 0.192 + 0.192
Xma[...,i] = image
[rowindex, colindex] = np.where(image > mask_thre)
M[rowindex, colindex, i] = 1
Pmetal_kev = np.asarray(ray_trafo(M[:,:,i]))
Tr[...,i] = Pmetal_kev > 0
Sma[...,i] = np.asarray(ray_trafo(image))
SLI[...,i] = interpolate_projection(Sma[...,i], Tr[...,i])
try:
XLI[..., i] = np.asarray(FBPOper(SLI[..., i]))
except:
pass
XLI[...,i] = np.asarray(FBPOper(SLI[...,i]))
# smFilter = gaussian_filter(size=(5, 5), sigma=1)
# NMAR method 1: Raw
imRaw = Xma[...,i]
metalBW = np.array(M[:,:,i],dtype=bool)
metalTrace = Tr[...,i]
proj = Sma[...,i]
imRaw[metalBW] = miuWater
imPriorNMAR1 = nmar_prior(imRaw, metalBW)
projPrior1 = np.asarray(ray_trafo(imPriorNMAR1))
PNMAR1 = nmar_proj(proj, projPrior1, metalTrace)
imNMAR1 = np.asarray(FBPOper(PNMAR1))
# NMAR method 2: LI
imLI = XLI[..., i]
imLI[metalBW] = miuWater
imPriorNMAR2 = nmar_prior(imLI, metalBW)
projPrior2 = np.asarray(ray_trafo(imPriorNMAR2))
PNMAR2 = nmar_proj(proj, projPrior2, metalTrace)
imNMAR2 = np.asarray(FBPOper(PNMAR2))
allXma.append(Xma)
allXLI.append(XLI)
allM.append(M)
allSma.append(Sma)
allSLI.append(SLI)
allTr.append(Tr)
allfilename.append(file_name)
return allXma, allXLI, allM, allSma, allSLI, allTr, allaffine, allfilename
def interpolate_projection(proj, metalTrace):
# projection linear interpolation
# Input:
# proj: uncorrected projection
# metalTrace: metal trace in projection domain (binary image)
# Output:
# Pinterp: linear interpolation corrected projection
Pinterp = proj.copy()
for i in range(Pinterp.shape[0]):
mslice = metalTrace[i]
pslice = Pinterp[i]
metalpos = np.nonzero(mslice==1)[0]
nonmetalpos = np.nonzero(mslice==0)[0]
pnonmetal = pslice[nonmetalpos]
pslice[metalpos] = interp1d(nonmetalpos,pnonmetal)(metalpos)
Pinterp[i] = pslice
return Pinterp
def nmar_prior(XLI, M):
XLI[M == 1] = miuWater
h, w = XLI.shape
im1d = XLI.reshape(h * w)
kmeans = KMeans(n_clusters=3, init=starpoint.reshape(-1, 1), max_iter=300)
labels = kmeans.fit_predict(im1d.reshape(-1, 1))
threshBone2 = np.min(im1d[labels == 2])
threshBone2 = np.max([threshBone2, 1.2 * miuWater])
threshWater2 = np.min(im1d[labels == 1])
# imPriorNMAR = nmarprior(XLI, threshWater2, threshBone2, miuAir, miuWater, smFilter)
imPriorNMAR = nmarprior(XLI, threshWater2, threshBone2, miuAir, miuWater)
return imPriorNMAR
def nmarprior(im, threshWater, threshBone, miuAir, miuWater):
imSm = gaussian_filter(im, sigma=1)
# smFilter = sio.loadmat('deeplesion/gaussianfilter.mat')['smFilter']
# imSm = scipy.ndimage.filters.convolve(im, smFilter, mode='nearest')
priorimgHU = imSm.copy()
priorimgHU[imSm <= threshWater] = miuAir
priorimgHU[(imSm > threshWater) & (imSm < threshBone)] = miuWater
return priorimgHU
def nmar_proj(proj, Pprior, metalTrace):
Pprior[Pprior < 0] = 0
eps = 1e-6
Pprior += eps
Pnorm = proj / Pprior
Pnorminterp = interpolate_projection(Pnorm, metalTrace)
Pnmar = Pnorminterp * Pprior
nonmetalpos = (metalTrace == 0)
Pnmar[nonmetalpos] = proj[nonmetalpos]
return Pnmar