复合算法 代码:
#导入包
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
#自定义数据
X,y=datasets.make_moons(random_state=41,noise=0.1,n_samples=500)
#绘制数据图形
plt.scatter(X[y==0,0],X[y==0,1],c="r")
plt.scatter(X[y==1,0],X[y==1,1],c="b")
plt.show()
#第一步:数据切分为训练数据和测试数据
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=51)
# print(X_train.shape) #观察数据的维度
#第二步:创建模型(继承算法模型,各个小算法模型)
#线性回归算法
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(X_train,y_train)
# print("线性归回算法得分:",lr.score(X_test,y_test))
#支持向量机SVM
from sklearn.svm import SVC
sc=SVC()
sc.fit(X_train,y_train)
# print("支持向量机算法得分:",sc.score(X_test,y_test))
#决策树算法
from sklearn.tree import DecisionT