机器视觉 - yolo 调参

模型训练通用规则:

  • 如果 train 效果挺好, 但test或predict效果较差, 说明 overfit 了. 原因有: (1)模型太复杂了, 这时候应该减少epoch 或者使用更小scale的模型. (2) train数据集太小, 这时候需要增加训练数据
  • 如果 train 效果不佳, 可以使用更大规模的模型, 或者增加训练数据, 或者增大 epoch.
  • 计算过程中不用关心 loss 是否太大, 重要的是loss 是否可以收敛. 如果始终不收敛, 尝试调整优化器类型或降低学习率.
  • from scratch 训练模型需要足够的算力和数据集, 以及强大的调参能力, 否则毫无意义.
  • 调整神经网络结构. 选择合适的模型规格( n/s/m/l/x 以及 p2/p6), 增加网络深度和宽度可以增强模型的表达能力.
  • 数据集应该大于 500, 否则效果很难上来.
  • 数据集应有较高质量, 标签不能错误, box边框要准确, 正负样本要平衡, 增加数据多样性.
  • 调整预测的阈值, 降低conf阈值可以提升recall, 提高conf阈值可以提升precision.
  • 调整超参, 学习率/batch/优化器/epoch 等参数

yolov8 参数设置技巧:

  • train/val/test/predict 超参最好要一致, 不一致的参数有可能会引起predict显著变化.
  • task 参数默认为 detect, 可以传递 task 如:[detect、classify、segment]
  • mode 参数默认为train, train模式下默认包含 val, ,mode 有:[train、predict、val、export]
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值