public class E43NumberOf1Between1AndN {
//1-N整数中含1的个数
public static int numberOf1(int n){ //时间复杂度为NO(log(N))
if (n <= 0)
return -1;
int count = 0;
for (int i = 1; i <= n; i ++){
if (contains1(i) != 0)
count += contains1(i);
}
return count;
}
private static int contains1(int number){
int count = 0;
while(number != 0){
if (number % 10 == 1)
count ++;
number /= 10;
}
return count;
}
public static int numberOf1_BetterSollution(int n){ //时间复杂度为O(logN)(底为10)
//将每一个位次上(个位+十位+...)1出现的次数相加
if (n < 1)
return 0;
int count = 0;
int base = 1;
int round = n;
int weight = round % 10;
while(round > 0){
round /= 10;
count += round * base;
if (weight == 1)
count += 1 + n % 10;
else if (weight > 1)
count += base;
base *= 10;
weight = round % 10;
}
return count;
}
//测试用例
public static void main(String[] args){
System.out.println(E43NumberOf1Between1AndN.numberOf1(12)); //5
System.out.println(E43NumberOf1Between1AndN.numberOf1_BetterSollution(12)); //5
System.out.println(E43NumberOf1Between1AndN.numberOf1_BetterSollution(21345)); //18481
}
}
1~n整数中1出现的次数(Java实现)
最新推荐文章于 2024-05-01 20:05:22 发布
本文介绍了一种高效的算法,用于计算从1到任意整数N范围内所有数字中数字1出现的总次数。通过优化的解决方案,算法的时间复杂度降低至O(logN),显著提高了大规模数据处理的效率。
398

被折叠的 条评论
为什么被折叠?



