OpenCV学堂 | YOLOv8实战 | 荧光显微镜细胞图像检测

本文来源公众号“OpenCV学堂”,仅用于学术分享,侵权删,干货满满。

原文链接:YOLOv8实战 | 荧光显微镜细胞图像检测

数据集地址

该图像数据集是 U2OS 细胞高通量化学筛选的一部分,其中包含 200 种生物活性化合物的示例。治疗效果最初是使用细胞绘画测定(荧光显微镜)成像的。该数据集仅包括每种化合物的单个视场的 DNA 通道。这些图像呈现了各种核表型,代表了高通量化学扰动。该数据集的主要用途是研究分割算法,该算法可以以准确的方式分离单个细胞核实例,而不管它们的形状和细胞密度如何。该集合有大约 23,000 个手动注释的单个细胞核,以建立用于分割评估的数据集合。

https://bbbc.broadinstitute.org/BBBC039

模型训练

准备好数据集以后,直接按下面的命令行运行即可:

yolo train model=yolov8s.pt data=bbbc022_dataset.yaml epochs=25 imgsz=640 batch=1

导出与测试

模型导出与测试

yolo export model=bbbc022_best.pt format=onnxyolo predict model=bbbc022_best.pt source=D:\tensor_cv2.jpg

部署推理

转成ONNX格式文件以后,基于OpenVINO-Python部署推理,相关代码如下

ie = Core()
for device in ie.available_devices:
    print(device)

# Read IR
model = ie.read_model(model="bbbc022_best.onnx")
compiled_model = ie.compile_model(model=model, device_name="CPU")
output_layer = compiled_model.output(0)

frame = cv.imread("D:/tensor_cv2.jpg")
bgr = format_yolov8(frame)
img_h, img_w, img_c = bgr.shape

start = time.time()
image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False)

res = compiled_model([image])[output_layer] # 1x84x8400
rows = np.squeeze(res, 0).T
class_ids = []
confidences = []
boxes = []
x_factor = img_w / 640
y_factor = img_h / 640

for r in range(rows.shape[0]):
    row = rows[r]
    classes_scores = row[4:]
    _, _, _, max_indx = cv.minMaxLoc(classes_scores)
    class_id = max_indx[1]
    if (classes_scores[class_id] > .25):
        confidences.append(classes_scores[class_id])
        class_ids.append(class_id)
        x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
        left = int((x - 0.5 * w) * x_factor)
        top = int((y - 0.5 * h) * y_factor)
        width = int(w * x_factor)
        height = int(h * y_factor)
        box = np.array([left, top, width, height])
        boxes.append(box)

indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
for index in indexes:
    box = boxes[index]
    color = colors[int(class_ids[index]) % len(colors)]
    rr = int((box[2] + box[3])/4)
    cv.circle(frame, (box[0]+int(box[2]/2), box[1]+int(box[3]/2)), rr-4, color, 2)
    cv.putText(frame, class_list[class_ids[index]], (box[0] + int(box[2] / 2), box[1] + int(box[3] / 2)),
               cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0))
cv.putText(frame, "gloomyfish@2024", (20, 45), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

cv.imshow("YOLOv8+OpenVINO2023 BBBC Count", frame)
cv.waitKey(0)
cv.destroyAllWindows()

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值