机器学习算法那些事 | TPAMI 2024.9 | FeatAug-DETR:通过特征增强丰富DETRs的一对多匹配

本文来源公众号“机器学习算法那些事”,仅用于学术分享,侵权删,干货满满。

原文链接:TPAMI 2024.9 | FeatAug-DETR:通过特征增强丰富DETRs的一对多匹配

论文标题:FeatAug-DETR: Enriching One-to-Many Matching for DETRs With Feature Augmentation

论文链接:https://ieeexplore.ieee.org/document/10480276

这篇论文提出了一种新方法,通过增强特征(而不仅仅是图像数据)来提升DETR(检测转换器)在目标检测任务中的性能。论文的主要贡献包括:

  • 一对多匹配的创新:DETR原本采用一对一匹配策略,这虽然避免了非极大值抑制(NMS)步骤,但导致正样本监督稀疏,进而训练收敛速度较慢。为了解决这个问题,本文提出通过数据增强(DataAug-DETR)和特征增强(FeatAug-DETR)来实现一对多匹配,从而加速训练并提升检测精度。

  • 特征增强(FeatAug-DETR):通过

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值