小白学视觉 | 漫谈图神经网络模型(GNN):从图到图卷积

本文来源公众号“小白学视觉”,仅用于学术分享,侵权删,干货满满。

原文链接:漫谈图神经网络模型(GNN):从图到图卷积

1 导读

本文试图沿着图神经网络的历史脉络,从最早基于不动点理论的图神经网络(GNN)一步步讲到当前用得最火的图卷积神经网络( GCN)

笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好。同时,很多教程只讲是什么,不讲为什么,也没有梳理清楚不同网络结构的区别与设计初衷(Motivation)。

因此,本文试图沿着图神经网络的历史脉络,从最早基于不动点理论的图神经网络(Graph Neural Network, GNN)一步步讲到当前用得最火的图卷积神经网络(Graph Convolutional Neural Network, GCN), 期望通过本文带给读者一些灵感与启示。

1. 本文的提纲与叙述要点主要参考了2篇图神经网络的Survey,分别是来自IEEE Fellow的A Comprehensive Survey on Graph Neural Networks[1] 以及来自清华大学朱文武老师组的Deep Learning on Graphs: A Survey[7], 在这里向两篇Survey的作者表示敬意。

2. 同时,本文关于部分图卷积神经网络的理解很多都是受到知乎问题[8]高赞答案的启发,非常感谢他们的无私分享!

3. 最后,本文还引用了一些来自互联网的生动形象的图片,在这里也向这些图片的作者表示感谢。本文中未注明出处的图片均为笔者制作,如需转载或引用请联系本人。

2 历史脉络

在开始正文之前,笔者先带大家回顾一下图神经网络的发展历史。不过,因为图神经网络的发展分支非常之多,笔者某些叙述可能并不全面,一家之言仅供各位读者参考:

  1. 图神经网络的概念最早在2005年提出。2009年Franco博士在其论文 [2]中定义了图神经网络的理论基础,笔者呆会要讲的第一种图神经网络也是基于这篇论文。

  2. 最早的GNN主要解决的还是如分子结构分类等严格意义上的图论问题。但实际上欧式空间(比如像图像 Image)或者是序列(比如像文本 Text),许多常见场景也都可以转换成图(Graph),然后就能使用图神经网络技术来建模。

  3. 2009年后图神经网络也陆续有一些相关研究,但没有太大波澜。直到2013年,在图信号处理(Graph Signal Processing)的基础上,Bruna(这位是LeCun的学生)在文献 [3]中首次提出图上的基于频域(Spectral-domain)和基于空域(Spatial-domain)的卷积神经网络。

  4. 其后至今,学界提出了很多基于空域的图卷积方式,也有不少学者试图通过统一的框架将前人的工作统一起来。而基于频域的工作相对较少,只受到部分学者的青睐。

  5. 值得一提的是,图神经网络与图表示学习(Represent Learning for Graph)的发展历程也惊人地相似。2014年,在word2vec [4]的启发下,Perozzi等人提出了DeepWalk [5],开启了深度学习时代图表示学习的大门。更有趣的是,就在几乎一样的时间,Bordes等人提出了大名鼎鼎的TransE [6],为知识图谱的分布式表示(Represent Learning for Knowledge Graph)奠定了基础。

3 图神经网络(Graph Neural Network)

首先要澄清一点,除非特别指明,本文中所提到的图均指图论中的图(Graph)。它是一种由若干个结点(Node)及连接两个结点的边(Edge)所构成的图形,用于刻画不同结点之间的关系。下面是一个生动的例子,图片来自论文[7]:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值