算法提高课第三章单源最短路

将一个背景复杂的问题抽象为单源最短路问题。
算法复杂度方面,迪杰斯特拉算法朴素版 O ( n 2 + m ) O(n^2 +m) O(n2+m),堆优化迪杰斯特拉 O ( m l o g n ) O(mlogn) O(mlogn),spfa O ( n m ) / O ( m ) O(nm) / O(m) O(nm)/O(m),floyd O ( n 3 ) O(n^3) O(n3)

朴素dijkstra算法

//双向道路
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 2510;
int g[N][N];
int dist[N];
bool st[N];
int n, m, e, s;
void dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[s] = 0;
    
    //寻找到s的最短路径
    for(int i = 1; i < n; i ++ )//最多扩展n - 1次
    {
        int t = -1;//在还未确定最短路的点中,寻找距离最小的点
        for(int j = 1; j <= n; j ++ )
        {
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        }
        
        //用最小点更新其他点
        for(int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        
        st[t] = true;//最小点的最短路是确定的
        
    }
}
int main()
{
    cin >> n >> m >> s >> e;
    memset(g, 0x3f, sizeof g);
    for(int i = 1; i <= m; i ++ )
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = g[b][a] = min(g[a][b], c);
    }
    dijkstra();
    cout << dist[e];
}

堆优化dijkstra

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>
#define x first
#define y second

using namespace std;
const int N = 2510;
const int M = 13000;

typedef pair<int, int> PII;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
bool st[N];
int n, m, s, ed;
void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}
void dijkstra()
{
    memset(st, 0, sizeof st);
    memset(dist, 0x3f, sizeof dist);
    dist[s] = 0;
    priority_queue<PII, vector<PII>, greater<PII> > q;
    q.push({0, s});
    while(q.size())
    {
        auto t = q.top();
        q.pop();
        
        if(st[t.y] || dist[t.y] != t.x) continue;
        st[t.y] = true;
        
        for(int i = h[t.y]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t.y] + w[i])
            {
                dist[j] = dist[t.y] + w[i];
                q.push({dist[j], j});
            }
        }
    }
}
int main()
{
    cin >> n >> m >> s >> ed;
    memset(h, -1, sizeof h);
    for(int i = 1; i <= m; i ++ )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
        add(b, a, c);
    }
    dijkstra();
    cout << dist[ed];
}

bellman-ford算法

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 6500;
struct edge
{
    int a, b, w;
}edges[2 * N];
int n, m, s, ed;
int dist[N];
void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[s] = 0;
    for(int i = 0; i < n; i ++ )
    {
        for(int j = 1; j <= 2 * m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if(dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }
}
int main()
{
    cin >> n >> m >> s >> ed;
    for(int i = 1; i <= m; i ++ )
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
        edges[i + m] = {b, a, w};
    }
    bellman_ford();
    cout << dist[ed];
}

spfa

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;
const int N = 3000;
const int M = 13000;
int h[N], e[M], w[M], ne[M], idx;
int dist[N];
bool st[N];
int n, m, s, ed;
void add(int a, int b, int c)  // 添加一条边a->b,边权为c
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
}

void spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[s] = 0;
    //多次入栈更新,如果没有负环最多会n次入栈
    queue<int> q;
    q.push(s);
    while(q.size())
    {
        auto t = q.front();
        q.pop();
        
        st[t] = false;//出栈
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
}
int main()
{
    cin >> n >> m >> s >> ed;
    memset(h, -1, sizeof h);
    for(int i = 1; i <= m; i ++ )
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
        add(b, a, c);
    }
    spfa();
    cout << dist[ed];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值