转自:https://www.cnblogs.com/grandyang/p/4481576.html
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
这道题让我们求三数之和,比之前那道Two Sum 两数之和要复杂一些,我们还是要首先对原数组进行排序,然后开始遍历排序后的数组,这里注意不是遍历到最后一个停止,而是到倒数第三个就可以了,然后我们还要加上重复就跳过的处理,对于遍历到的数,我们用0减去这个数得到一个sum,我们只需要再之后找到两个数之和等于sum即可,这样一来问题又转化为了求two sum,这时候我们一次扫描,找到了等于sum的两数后,加上当前遍历到的数字,按顺序存入结果中即可,然后还要注意跳过重复数字。代码如下:
解法一:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); ++k) {
if (nums[k] > 0) break;
if (k > 0 && nums[k] == nums[k - 1]) continue;
int target = 0 - nums[k];
int i = k + 1, j = nums.size() - 1;
while (i < j) {
if (nums[i] + nums[j] == target) {
res.push_back({nums[k], nums[i], nums[j]});
while (i < j && nums[i] == nums[i + 1]) ++i;
while (i < j && nums[j] == nums[j - 1]) --j;
++i; --j;
} else if (nums[i] + nums[j] < target) ++i;
else --j;
}
}
return res;
}
};
或者我们也可以利用set的不能包含重复项的特点来防止重复项的产生,参见代码如下:
解法二:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
set<vector<int>> res;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); ++k) {
if (nums[k] > 0) break;
int target = 0 - nums[k];
int i = k + 1, j = nums.size() - 1;
while (i < j) {
if (nums[i] + nums[j] == target) {
res.insert({nums[k], nums[i], nums[j]});
while (i < j && nums[i] == nums[i + 1]) ++i;
while (i < j && nums[j] == nums[j - 1]) --j;
++i; --j;
} else if (nums[i] + nums[j] < target) ++i;
else --j;
}
}
return vector<vector<int>>(res.begin(), res.end());
}
};