一、代码
本代码使用Fortran语言编写。在理论上,使用四边形网格、使用源分布模型,用于计算无界流中单浮体或多浮体情况下的目标浮体的附加质量。
详细理论参考《船舶在波浪中运动的势流理论》(戴遗山 段文洋 著)及相关MOOC。
program Hess_Smith_MultiFloats
implicit none
interface
subroutine wenjian(name,Npoints,Npanels,NpointsT,NpanelsT,coor,ele,AVO,nj,n_xi,n_eta,coor_local,area)
character*12 :: name
integer :: Npoints,Npanels
integer :: NpointsT,NpanelsT
real*8,allocatable :: coor(:,:)
integer,allocatable :: ele(:,:)
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: n_xi(:,:) !面元局部坐标系xi方向的单位向量(大地系)
real*8,allocatable :: n_eta(:,:) !面元局部坐标系eta方向的单位向量(大地系)
real*8,allocatable :: coor_local(:,:) !投影后点的局部坐标
real*8,allocatable :: area(:) !每个面元的面积
real*8 :: brick=0.0 !哪里需要就用在哪
real*8 :: brick1=0.0 !哪里需要就用在哪
end subroutine
end interface
interface
subroutine yingxiangxishu(Npoints,Npanels,AVO,nj,n_xi,n_eta,aij,cij,coor_local)
integer :: Npoints,Npanels
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: n_xi(:,:) !面元局部坐标系xi方向的单位向量(大地系)
real*8,allocatable :: n_eta(:,:) !面元局部坐标系eta方向的单位向量(大地系)
real*8,allocatable :: aij(:,:) !影响系数矩阵
real*8,allocatable :: cij(:,:)
real*8,allocatable :: coor_local(:,:) !投影后点的局部坐标
end subroutine
subroutine AdditionalQuality(Npoints,Npanels,NpointsT,NpanelsT,AVO,nj,aij,cij,area,ni,bi,sigma,phi_pi,mji)
integer :: Npoints,Npanels
integer :: NpointsT,NpanelsT
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: aij(:,:) !影响系数矩阵
real*8,allocatable :: cij(:,:)
real*8,allocatable :: area(:) !每个面元的面积
real*8,allocatable :: ni(:,:)
real*8,allocatable :: bi(:)
real*8,allocatable :: sigma(:)
real*8,allocatable :: phi_pi(:)
real*8 :: mji(6,6)
end subroutine
end interface
character*12 :: name
integer :: i,j
integer :: Npoints,Npanels !总网格数,如果是单浮体那就=NpointT
integer :: NpointsT,NpanelsT !NpointsTarget,目标浮体的网格数
real*8,allocatable :: coor(:,:)
integer,allocatable :: ele(:,:)
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: n_xi(:,:) !面元局部坐标系xi方向的单位向量(大地系)
real*8,allocatable :: n_eta(:,:) !面元局部坐标系eta方向的单位向量(大地系)
real*8,allocatable :: aij(:,:) !影响系数矩阵
real*8,allocatable :: cij(:,:)
real*8,allocatable :: coor_local(:,:) !投影后点的局部坐标
real*8,allocatable :: area(:) !每个面元的面积
real*8,allocatable :: ni(:,:)
real*8,allocatable :: bi(:)
real*8,allocatable :: sigma(:)
real*8,allocatable :: phi_pi(:)
real*8 :: mji(6,6)
print *, '程序正在运行,请稍等……'
call wenjian(name,Npoints,Npanels,NpointsT,NpanelsT,coor,ele,AVO,nj,n_xi,n_eta,coor_local,area)
call yingxiangxishu(Npoints,Npanels,AVO,nj,n_xi,n_eta,aij,cij,coor_local)
call AdditionalQuality(Npoints,Npanels,NpointsT,NpanelsT,AVO,nj,aij,cij,area,ni,bi,sigma,phi_pi,mji)
open(20,file='mji.txt')
do j=1,6
do i=1,5
write(20,"(F12.3)",advance='no') mji(j,i)
end do
write(20,"(F12.3)") mji(j,6)
end do
close(20)
print *, 'm11=',mji(1,1)
print *, 'm33=',mji(3,3)
print *, '计算结束,请关闭'
read(*,*) i
end program
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!读取文件并处理相关数据
subroutine wenjian(name,Npoints,Npanels,NpointsT,NpanelsT,coor,ele,AVO,nj,n_xi,n_eta,coor_local,area)
implicit none
character*12 :: name
integer :: i,j
integer :: Npoints,Npanels
integer :: NpointsT,NpanelsT
real*8,allocatable :: coor(:,:)
integer,allocatable :: ele(:,:)
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: n_xi(:,:) !面元局部坐标系xi方向的单位向量(大地系)
real*8,allocatable :: n_eta(:,:) !面元局部坐标系eta方向的单位向量(大地系)
real*8 :: V13(3)=0.0
real*8 :: V24(3)=0.0
real*8 :: Oq(3)=(/0.0,0.0,0.0/)
real*8 :: Oq1(3)=(/0.0,0.0,0.0/)
real*8,allocatable :: coor_local(:,:) !投影后点的局部坐标
real*8,allocatable :: area(:) !每个面元的面积
real*8 :: brick=0.0 !哪里需要就用在哪
real*8 :: brick1=0.0 !哪里需要就用在哪
open(10,file="input.txt")
read(10,*) Npoints,Npanels,NpointsT,NpanelsT
allocate(coor(Npoints,3))
allocate(ele(Npanels,4))
do i=1,Npoints
read(10,*) coor(i,1),coor(i,2),coor(i,3)
end do
do i=1,Npanels
read(10,*) ele(i,1),ele(i,2),ele(i,3),ele(i,4) !为了满足求Sx,Sy,Sz时逆时针排列(平面格林公式,法向和线积分方向的关系)
end do
close(10)
!求面元原点平均坐标
allocate(AVO(Npanels,3))
do i=1,Npanels
AVO(i,1)=(coor(ele(i,1),1)+coor(ele(i,2),1)+coor(ele(i,3),1)+coor(ele(i,4),1))/4.0
AVO(i,2)=(coor(ele(i,1),2)+coor(ele(i,2),2)+coor(ele(i,3),2)+coor(ele(i,4),2))/4.0
AVO(i,3)=(coor(ele(i,1),3)+coor(ele(i,2),3)+coor(ele(i,3),3)+coor(ele(i,4),3))/4.0
end do
!求面元单位法向矢量(大地系)
allocate(nj(Npanels,3))
do i=1,Npanels
V13(1)=coor(ele(i,3),1)-coor(ele(i,1),1) !每个ele的1、3点形成的向量
V13(2)=coor(ele(i,3),2)-coor(ele(i,1),2)
V13(3)=coor(ele(i,3),3)-coor(ele(i,1),3)
V24(1)=coor(ele(i,4),1)-coor(ele(i,2),1) !每个ele的2、4点形成的向量
V24(2)=coor(ele(i,4),2)-coor(ele(i,2),2)
V24(3)=coor(ele(i,4),3)-coor(ele(i,2),3)
brick=SQRT((V13(2)*V24(3)-V24(2)*V13(3))**2.0+(V24(1)*V13(3)-V13(1)*V24(3))**2.0+(V13(1)*V24(2)-V24(1)*V13(2))**2.0)
nj(i,1)=(V13(2)*V24(3)-V24(2)*V13(3))/brick !brick是向量13与24叉乘结果的模
nj(i,2)=(V24(1)*V13(3)-V13(1)*V24(3))/brick
nj(i,3)=(V13(1)*V24(2)-V24(1)*V13(2))/brick
end do
!求每个面元4个点投影的局部系坐标(xi(即kesei)和eta)
allocate(n_xi(Npanels,3))
allocate(n_eta(Npanels,3))
allocate(coor_local(4*Npanels,3))
allocate(area(Npanels))
do i=1,Npanels
do j=1,4
Oq(1)=coor(ele(i,j),1)-AVO(i,1)
Oq(2)=coor(ele(i,j),2)-AVO(i,2)
Oq(3)=coor(ele(i,j),3)-AVO(i,3)
brick=Oq(1)*nj(i,1)+Oq(2)*nj(i,2)+Oq(3)*nj(i,3) !brick:Oq与法向的点乘
Oq1(1)=Oq(1)-brick*nj(i,1)
Oq1(2)=Oq(2)-brick*nj(i,2)
Oq1(3)=Oq(3)-brick*nj(i,3)
if(j==1) then !求面元局部坐标系xi方向的单位向量(大地系)(认为每个ele的第1个点是xi轴方向)
brick1=SQRT(Oq1(1)**2.0+Oq1(2)**2.0+Oq1(3)**2.0) !brick1是向量Oq1的模
n_xi(i,1)=Oq1(1)/brick1
n_xi(i,2)=Oq1(2)/brick1
n_xi(i,3)=Oq1(3)/brick1
n_eta(i,1)=nj(i,2)*n_xi(i,3)-nj(i,3)*n_xi(i,2) !叉乘得到eta(大地系)
n_eta(i,2)=nj(i,3)*n_xi(i,1)-nj(i,1)*n_xi(i,3)
n_eta(i,3)=nj(i,1)*n_xi(i,2)-nj(i,2)*n_xi(i,1)
end if
coor_local(4*(i-1)+j,1)=Oq1(1)*n_xi(i,1)+Oq1(2)*n_xi(i,2)+Oq1(3)*n_xi(i,3) !求每个ele的4个点投影的局部坐标
coor_local(4*(i-1)+j,2)=Oq1(1)*n_eta(i,1)+Oq1(2)*n_eta(i,2)+Oq1(3)*n_eta(i,3)
coor_local(4*(i-1)+j,3)=Oq1(1)*nj(i,1)+Oq1(2)*nj(i,2)+Oq1(3)*nj(i,3) !!!应该不用求,就是0才对
end do
!求每个面元的面积(分成两个三角形)
area(i)=0.5*ABS((coor_local(4*(i-1)+4,1)-coor_local(4*(i-1)+1,1))*(coor_local(4*(i-1)+2,2)-coor_local(4*(i-1)+1,2))-&
(coor_local(4*(i-1)+4,2)-coor_local(4*(i-1)+1,2))*(coor_local(4*(i-1)+2,1)-coor_local(4*(i-1)+1,1)))+&
0.5*ABS((coor_local(4*(i-1)+4,1)-coor_local(4*(i-1)+3,1))*(coor_local(4*(i-1)+2,2)-coor_local(4*(i-1)+3,2))&
-(coor_local(4*(i-1)+4,2)-coor_local(4*(i-1)+3,2))*(coor_local(4*(i-1)+2,1)-coor_local(4*(i-1)+3,1)))
end do
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!计算Sx,Sy,Sz,S,aij,cij
subroutine yingxiangxishu(Npoints,Npanels,AVO,nj,n_xi,n_eta,aij,cij,coor_local)
implicit none
real*8,parameter :: pi=4.0*ATAN(1.0) !π
integer :: i,j,k
integer :: Npoints,Npanels
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: n_xi(:,:) !面元局部坐标系xi方向的单位向量(大地系)
real*8,allocatable :: n_eta(:,:)!面元局部坐标系eta方向的单位向量(大地系)
real*8,allocatable :: aij(:,:) !影响系数矩阵
real*8,allocatable :: cij(:,:)
real*8 :: AVO_local(3)=(/0.0,0.0,0.0/)
real*8 :: Oq1(3)=(/0.0,0.0,0.0/)
real*8,allocatable :: coor_local(:,:) !投影后点的局部坐标
real*8 :: l(4),r(4),c(4),h(4),m(4) !求Sx,Sy,Sz,S用
real*8 :: Sx=0.0,Sy=0.0,Sz=0.0,S=0.0
real*8 :: Sx1=0.0,Sy1=0.0,Sz1=0.0
allocate(aij(Npanels,Npanels))
allocate(cij(Npanels,Npanels))
do j=1,Npanels
do i=1,Npanels
Oq1(1)=AVO(i,1)-AVO(j,1) !求第i个面元坐标原点在第j个面元的局部系坐标AVO_local
Oq1(2)=AVO(i,2)-AVO(j,2)
Oq1(3)=AVO(i,3)-AVO(j,3)
AVO_local(1)=Oq1(1)*n_xi(j,1)+Oq1(2)*n_xi(j,2)+Oq1(3)*n_xi(j,3)
AVO_local(2)=Oq1(1)*n_eta(j,1)+Oq1(2)*n_eta(j,2)+Oq1(3)*n_eta(j,3)
AVO_local(3)=Oq1(1)*nj(j,1)+Oq1(2)*nj(j,2)+Oq1(3)*nj(j,3) !到这里求完AVO_local
do k=1,3 !求l
l(k)=SQRT((coor_local(4*(j-1)+k+1,1)-coor_local(4*(j-1)+k,1))**2.0+(coor_local(4*(j-1)+k+1,2)-coor_local(4*(j-1)+k,2))**2.0)
end do
l(4)=SQRT((coor_local(4*(j-1)+1,1)-coor_local(4*(j-1)+4,1))**2.0+(coor_local(4*(j-1)+1,2)-coor_local(4*(j-1)+4,2))**2.0)
do k=1,4
c(k)=(coor_local(4*(j-1)+k,1)-AVO_local(1))**2.0+AVO_local(3)**2.0 !求c
r(k)=SQRT(c(k)+(coor_local(4*(j-1)+k,2)-AVO_local(2))**2.0) !求r
h(k)=(coor_local(4*(j-1)+k,1)-AVO_local(1))*(coor_local(4*(j-1)+k,2)-AVO_local(2)) !求h
end do
do k=1,3 !求m
m(k)=(coor_local(4*(j-1)+k+1,2)-coor_local(4*(j-1)+k,2))/(coor_local(4*(j-1)+k+1,1)-coor_local(4*(j-1)+k,1))
end do
m(4)=(coor_local(4*(j-1)+1,2)-coor_local(4*(j-1)+4,2))/(coor_local(4*(j-1)+1,1)-coor_local(4*(j-1)+4,1))
Sx=0.0 !求Sx
do k=1,3
if(ABS((coor_local(4*(j-1)+k+1,2)-coor_local(4*(j-1)+k,2)))<=1.0E-12) then
Sx=Sx
else
Sx=Sx-(coor_local(4*(j-1)+k+1,2)-coor_local(4*(j-1)+k,2))/l(k)*LOG((r(k)+r(k+1)+l(k))/(r(k)+r(k+1)-l(k)))
end if
end do
if(ABS((coor_local(4*(j-1)+4,2)-coor_local(4*(j-1)+1,2)))<=1.0E-12) then
Sx=Sx
else
Sx=Sx-(coor_local(4*(j-1)+1,2)-coor_local(4*(j-1)+4,2))/l(4)*LOG((r(4)+r(1)+l(4))/(r(4)+r(1)-l(4)))
end if
Sy=0.0 !求Sy
do k=1,3
if(ABS((coor_local(4*(j-1)+k+1,1)-coor_local(4*(j-1)+k,1)))<=1.0E-12) then
Sy=Sy
else
Sy=Sy+(coor_local(4*(j-1)+k+1,1)-coor_local(4*(j-1)+k,1))/l(k)*LOG((r(k)+r(k+1)+l(k))/(r(k)+r(k+1)-l(k)))
end if
end do
if(ABS((coor_local(4*(j-1)+4,1)-coor_local(4*(j-1)+1,1)))<=1.0E-12) then
Sy=Sy
else
Sy=Sy+(coor_local(4*(j-1)+1,1)-coor_local(4*(j-1)+4,1))/l(4)*LOG((r(4)+r(1)+l(4))/(r(4)+r(1)-l(4)))
end if
Sz=0.0 !求Sz
if(ABS(AVO_local(3))<=1.0E-12) then
Sz=0.0
else
do k=1,3
if(ABS((coor_local(4*(j-1)+k+1,1)-coor_local(4*(j-1)+k,1)))<=1.0E-12) then !书上P27页xi_i+1=xi_i的情况:对应线段上Sz=0
Sz=Sz
else
Sz=Sz+(ATAN((m(k)*c(k)-h(k))/AVO_local(3)/r(k))-ATAN((m(k)*c(k+1)-h(k+1))/AVO_local(3)/r(k+1)))
end if
end do
if(ABS((coor_local(4*(j-1)+4,1)-coor_local(4*(j-1)+1,1)))<=1.0E-12) then
Sz=Sz
else
Sz=Sz+(ATAN((m(4)*c(4)-h(4))/AVO_local(3)/r(4))-ATAN((m(4)*c(1)-h(1))/AVO_local(3)/r(1)))
end if
end if
S=0.0 !求S
do k=1,3
S=S+((coor_local(4*(j-1)+k+1,1)-coor_local(4*(j-1)+k,1))*(AVO_local(2)-coor_local(4*(j-1)+k,2))&
-(coor_local(4*(j-1)+k+1,2)-coor_local(4*(j-1)+k,2))*(AVO_local(1)-coor_local(4*(j-1)+k,1)))&
/l(k)*LOG((r(k)+r(k+1)+l(k))/(r(k)+r(k+1)-l(k)))
end do
S=S+((coor_local(4*(j-1)+1,1)-coor_local(4*(j-1)+4,1))*(AVO_local(2)-coor_local(4*(j-1)+4,2))&
-(coor_local(4*(j-1)+1,2)-coor_local(4*(j-1)+4,2))*(AVO_local(1)-coor_local(4*(j-1)+4,1)))&
/l(4)*LOG((r(4)+r(1)+l(4))/(r(4)+r(1)-l(4)))
S=S+AVO_local(3)*Sz
cij(i,j)=S !求cij
if(i==j) then
aij(i,j)=2.0*pi
else if(i/=j) then !将(Sx,Sy,Sz)转回大地坐标系
Sx1=Sx*n_xi(j,1)+Sy*n_eta(j,1)+Sz*nj(j,1)
Sy1=Sx*n_xi(j,2)+Sy*n_eta(j,2)+Sz*nj(j,2)
Sz1=Sx*n_xi(j,3)+Sy*n_eta(j,3)+Sz*nj(j,3)
aij(i,j)=Sx1*nj(j,1)+Sy1*nj(j,2)+Sz1*nj(j,3) !求aij
end if
end do
end do
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!计算附加质量
subroutine AdditionalQuality(Npoints,Npanels,NpointsT,NpanelsT,AVO,nj,aij,cij,area,ni,bi,sigma,phi_pi,mji)
implicit none
real*8,parameter :: rho=1000.0 !水的密度
integer :: i,j,k,k1
integer :: Npoints,Npanels
integer :: NpointsT,NpanelsT
real*8,allocatable :: AVO(:,:) !面元原点平均坐标
real*8,allocatable :: nj(:,:) !面元单位法向矢量(大地系)
real*8,allocatable :: aij(:,:) !影响系数矩阵
real*8,allocatable :: cij(:,:)
real*8,allocatable :: area(:) !每个面元的面积
real*8,allocatable :: ni(:,:)
real*8,allocatable :: bi(:)
real*8,allocatable :: sigma(:)
real*8,allocatable :: phi_pi(:)
real*8 :: mji(6,6)
!计算bi,并求解线代方程组aij*sigma=bi(bi实际上是ni不同辐射势1-6)
allocate(ni(Npanels,6))
do i=1,Npanels
ni(i,1)=nj(i,1) !根据式(2.1.17)、(2.1.15)
ni(i,2)=nj(i,2)
ni(i,3)=nj(i,3)
ni(i,4)=AVO(i,2)*nj(i,3)-AVO(i,3)*nj(i,2)
ni(i,5)=AVO(i,3)*nj(i,1)-AVO(i,1)*nj(i,3)
ni(i,6)=AVO(i,1)*nj(i,2)-AVO(i,2)*nj(i,1)
end do
mji=0.0
allocate(sigma(Npanels))
allocate(bi(Npanels))
allocate(phi_pi(Npanels))
do k=1,6 !求k方向自由度的运动在k1方向产生的附加质量mji(i对应k,j对应k1)
do i=1,Npanels
bi(i)=ni(i,k)
end do
sigma=0.0
call gaussRK(aij,bi,sigma,Npanels)
phi_pi(1:Npanels)=0.0 !式(2.7.20)求的:k方向自由度运动时,所有面元的分布源在pi点的诱导速度势
do i=1,NpanelsT
do j=1,Npanels
phi_pi(i)=phi_pi(i)+cij(i,j)*sigma(j)
end do
end do
do k1=1,6 !求mji
do i=1,NpanelsT
mji(k1,k)=mji(k1,k)+rho*phi_pi(i)*ni(i,k1)*area(i) !i对应k,j对应k1
end do
end do
end do
end subroutine
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!高斯消去法(doolittle分解)
subroutine gaussRK(G,b,a,n)
implicit real*8(a-z)
integer :: i,j,k
integer :: n !格拉姆是n阶方阵
real*8 :: G(n,n) !格拉姆矩阵 Ax=b中的A
real*8 :: b(n) !Ax=b中的b
real*8 :: a(n) !拟合的函数的基phi的系数 Ax=b中的x
real*8,allocatable :: m(:) !见下方解释 m=Ua
real*8,allocatable :: L(:,:)
real*8,allocatable :: U(:,:)
real*8 :: sigma=0. !用于累加求和
allocate(m(n))
allocate(L(n,n))
allocate(U(n,n))
!本题中doolittle分解:Ga=b,G=LU,LUa=b,Ua=m,Lm=b
!求L、U、m、a(见P153页)
do i=1,n
L(i,i)=1.0
end do
do i=1,n
U(1,i)=G(1,i)
end do
do i=2,n
L(i,1)=G(i,1)/U(1,1)
end do
do i=2,n
do j=i,n
do k=1,i-1
sigma=sigma+L(i,k)*U(k,j)
end do
U(i,j)=G(i,j)-sigma
sigma=0.
end do
if(i==n) cycle
do j=i+1,n
do k=1,i-1
sigma=sigma+L(j,k)*U(k,i)
end do
L(j,i)=(G(j,i)-sigma)/U(i,i)
sigma=0.
end do
end do
m(1)=b(1)
do i=2,n
do k=1,i-1
sigma=sigma+L(i,k)*m(k)
end do
m(i)=b(i)-sigma
sigma=0.
end do
a(n)=m(n)/U(n,n)
do i=n-1,1,-1
do k=i+1,n
sigma=sigma+U(i,k)*a(k)
end do
a(i)=(m(i)-sigma)/U(i,i)
sigma=0.
end do
end subroutine
二、输入文件
作为输入的“input.txt”文件有下述要求。
1、文件的内容参考代码中读取文件部分。
2、每个网格(ele)有4个点,input文件中点的排序应保证:按1234的顺序用右手螺旋定则判断方向,方向应指向物体外侧。(在代码中有使用点13和点24的向量叉乘给定面元法向的部分,但这部分代码好像不对,和理论正好写反了,我需要进一步研究。但是计算结果是正确的。)
3、如果计算单浮体,第一行仍要有4个数字,只是前两个重复、后两个也重复。
4、如果计算多浮体,请确保目标浮体的点(points)和网格(panels或者说ele)都在各自位置的最前面。以下面这个双浮体的input文件为例:372个Npoints节点中,前186个为目标浮体的节点NpointsT,剩余的为另一个浮体的节点;368个Npanels中,前184个为目标浮体的网格NpanelsT.
372 368 186 184 !分别是Npoints,Npanels,NpointsT,NpanelsT
-4.7182400E+00 -1.8171000E-01 -2.7587000E-01
-4.8324000E+00 -2.1791000E-01 -1.3313000E-01
-4.9673800E+00 0.0000000E+00 -1.1169000E-01
-4.8267600E+00 0.0000000E+00 -2.5997000E-01
-4.2278100E+00 0.0000000E+00 -5.3229000E-01
-4.2410100E+00 -2.8370000E-01 -4.4400000E-01
-4.2426500E+00 -4.4967000E-01 -2.7299000E-01
-3.5547400E+00 -5.9588000E-01 -3.6771000E-01
-3.5400200E+00 -7.0611000E-01 0.0000000E+00
-4.2279000E+00 -5.3226000E-01 0.0000000E+00
-4.8387500E+00 -2.5076000E-01 0.0000000E+00
-3.5550600E+00 -3.7059000E-01 -5.9401000E-01
-2.8492200E+00 -4.3026000E-01 -6.9701000E-01
-2.8491700E+00 -6.9697000E-01 -4.3021000E-01
-3.5407600E+00 0.0000000E+00 -7.0595000E-01
-2.8438200E+00 0.0000000E+00 -8.2126000E-01
-2.1367200E+00 0.0000000E+00 -9.0282000E-01
-2.1404800E+00 -4.7009000E-01 -7.6877000E-01
-1.4284700E+00 -4.9948000E-01 -8.1479000E-01
-1.4282600E+00 -8.1543000E-01 -4.9756000E-01
-2.1403300E+00 -7.6784000E-01 -4.7067000E-01
-1.4260000E+00 0.0000000E+00 -9.5798000E-01
-7.1305000E-01 0.0000000E+00 -9.8871000E-01
-7.1466000E-01 -5.1691000E-01 -8.4100000E-01
0.0000000E+00 -5.1135000E-01 -8.5791000E-01
0.0000000E+00 -8.5971000E-01 -5.0827000E-01
-7.1469000E-01 -8.4232000E-01 -5.1482000E-01
0.0000000E+00 0.0000000E+00 -1.0000000E+00
0.0000000E+00 -1.0000000E+00 0.0000000E+00
-7.1311000E-01 -9.8871000E-01 0.0000000E+00
-1.4258100E+00 -9.5800000E-01 0.0000000E+00
-2.1366800E+00 -9.0283000E-01 0.0000000E+00
-2.8440800E+00 -8.2123000E-01 0.0000000E+00
-5.0000000E+00 0.0000000E+00 0.0000000E+00
4.8267600E+00 0.0000000E+00 -2.5997000E-01
4.9673800E+00 0.0000000E+00 -1.1169000E-01
4.8324000E+00 -2.1791000E-01 -1.3313000E-01
4.7182400E+00 -1.8171000E-01 -2.7587000E-01
4.2410100E+00 -2.8370000E-01 -4.4400000E-01
4.2278100E+00 0.0000000E+00 -5.3229000E-01
4.2426500E+00 -4.4967000E-01 -2.7299000E-01
4.2279000E+00 -5.3226000E-01 0.0000000E+00
3.5400200E+00 -7.0611000E-01 0.0000000E+00
3.5547400E+00 -5.9588000E-01 -3.6771000E-01
4.8387500E+00 -2.5076000E-01 0.0000000E+00
3.5550600E+00 -3.7059000E-01 -5.9401000E-01
2.8491700E+00 -6.9697000E-01 -4.3021000E-01
2.8492200E+00 -4.3026000E-01 -6.9701000E-01
3.5407600E+00 0.0000000E+00 -7.0595000E-01
2.8438200E+00 0.0000000E+00 -8.2126000E-01
2.1404800E+00 -4.7009000E-01 -7.6877000E-01
2.1367200E+00 0.0000000E+00 -9.0282000E-01
2.1403300E+00 -7.6784000E-01 -4.7067000E-01
1.4282600E+00 -8.1543000E-01 -4.9756000E-01
1.4284700E+00 -4.9948000E-01 -8.1479000E-01
1.4260000E+00 0.0000000E+00 -9.5798000E-01
7.1466000E-01 -5.1691000E-01 -8.4100000E-01
7.1305000E-01 0.0000000E+00 -9.8871000E-01
7.1469000E-01 -8.4232000E-01 -5.1482000E-01
7.1311000E-01 -9.8871000E-01 0.0000000E+00
1.4258100E+00 -9.5800000E-01 0.0000000E+00
2.1366800E+00 -9.0283000E-01 0.0000000E+00
2.8440800E+00 -8.2123000E-01 0.0000000E+00
5.0000000E+00 0.0000000E+00 0.0000000E+00
-4.8324000E+00 2.1791000E-01 -1.3313000E-01
-4.7182400E+00 1.8171000E-01 -2.7587000E-01
-4.2410100E+00 2.8370000E-01 -4.4400000E-01
-4.2426500E+00 4.4967000E-01 -2.7299000E-01
-4.2279000E+00 5.3226000E-01 0.0000000E+00
-3.5400200E+00 7.0611000E-01 0.0000000E+00
-3.5547400E+00 5.9588000E-01 -3.6771000E-01
-4.8387500E+00 2.5076000E-01 0.0000000E+00
-3.5550600E+00 3.7059000E-01 -5.9401000E-01
-2.8491700E+00 6.9697000E-01 -4.3021000E-01
-2.8492200E+00 4.3026000E-01 -6.9701000E-01
-2.1404800E+00 4.7009000E-01 -7.6877000E-01
-2.1403300E+00 7.6784000E-01 -4.7067000E-01
-1.4282600E+00 8.1543000E-01 -4.9756000E-01
-1.4284700E+00 4.9948000E-01 -8.1479000E-01
-7.1466000E-01 5.1691000E-01 -8.4100000E-01
-7.1469000E-01 8.4232000E-01 -5.1482000E-01
0.0000000E+00 8.5971000E-01 -5.0827000E-01
0.0000000E+00 5.1135000E-01 -8.5791000E-01
-7.1311000E-01 9.8871000E-01 0.0000000E+00
0.0000000E+00 1.0000000E+00 0.0000000E+00
-1.4258100E+00 9.5800000E-01 0.0000000E+00
-2.1366800E+00 9.0283000E-01 0.0000000E+00
-2.8440800E+00 8.2123000E-01 0.0000000E+00
4.7182400E+00 1.8171000E-01 -2.7587000E-01
4.8324000E+00 2.1791000E-01 -1.3313000E-01
4.2410100E+00 2.8370000E-01 -4.4400000E-01
4.2426500E+00 4.4967000E-01 -2.7299000E-01
3.5547400E+00 5.9588000E-01 -3.6771000E-01
3.5400200E+00 7.0611000E-01 0.0000000E+00
4.2279000E+00 5.3226000E-01 0.0000000E+00
4.8387500E+00 2.5076000E-01 0.0000000E+00
3.5550600E+00 3.7059000E-01 -5.9401000E-01
2.8492200E+00 4.3026000E-01 -6.9701000E-01
2.8491700E+00 6.9697000E-01 -4.3021000E-01
2.1404800E+00 4.7009000E-01 -7.6877000E-01
1.4284700E+00 4.9948000E-01 -8.1479000E-01
1.4282600E+00 8.1543000E-01 -4.9756000E-01
2.1403300E+00 7.6784000E-01 -4.7067000E-01
7.1466000E-01 5.1691000E-01 -8.4100000E-01
7.1469000E-01 8.4232000E-01 -5.1482000E-01
7.1311000E-01 9.8871000E-01 0.0000000E+00
1.4258100E+00 9.5800000E-01 0.0000000E+00
2.1366800E+00 9.0283000E-01 0.0000000E+00
2.8440800E+00 8.2123000E-01 0.0000000E+00
-4.8267600E+00 0.0000000E+00 2.5997000E-01
-4.9673800E+00 0.0000000E+00 1.1169000E-01
-4.8324000E+00 -2.1791000E-01 1.3313000E-01
-4.7182400E+00 -1.8171000E-01 2.7587000E-01
-4.2410100E+00 -2.8370000E-01 4.4400000E-01
-4.2278100E+00 0.0000000E+00 5.3229000E-01
-4.2426500E+00 -4.4967000E-01 2.7299000E-01
-3.5547400E+00 -5.9588000E-01 3.6771000E-01
-3.5550600E+00 -3.7059000E-01 5.9401000E-01
-2.8491700E+00 -6.9697000E-01 4.3021000E-01
-2.8492200E+00 -4.3026000E-01 6.9701000E-01
-3.5407600E+00 0.0000000E+00 7.0595000E-01
-2.8438200E+00 0.0000000E+00 8.2126000E-01
-2.1404800E+00 -4.7009000E-01 7.6877000E-01
-2.1367200E+00 0.0000000E+00 9.0282000E-01
-2.1403300E+00 -7.6784000E-01 4.7067000E-01
-1.4282600E+00 -8.1543000E-01 4.9756000E-01
-1.4284700E+00 -4.9948000E-01 8.1479000E-01
-1.4260000E+00 0.0000000E+00 9.5798000E-01
-7.1466000E-01 -5.1691000E-01 8.4100000E-01
-7.1305000E-01 0.0000000E+00 9.8871000E-01
-7.1469000E-01 -8.4232000E-01 5.1482000E-01
0.0000000E+00 -8.5971000E-01 5.0827000E-01
0.0000000E+00 -5.1135000E-01 8.5791000E-01
0.0000000E+00 0.0000000E+00 1.0000000E+00
4.7182400E+00 -1.8171000E-01 2.7587000E-01
4.8324000E+00 -2.1791000E-01 1.3313000E-01
4.9673800E+00 0.0000000E+00 1.1169000E-01
4.8267600E+00 0.0000000E+00 2.5997000E-01
4.2278100E+00 0.0000000E+00 5.3229000E-01
4.2410100E+00 -2.8370000E-01 4.4400000E-01
4.2426500E+00 -4.4967000E-01 2.7299000E-01
3.5547400E+00 -5.9588000E-01 3.6771000E-01
3.5550600E+00 -3.7059000E-01 5.9401000E-01
2.8492200E+00 -4.3026000E-01 6.9701000E-01
2.8491700E+00 -6.9697000E-01 4.3021000E-01
3.5407600E+00 0.0000000E+00 7.0595000E-01
2.8438200E+00 0.0000000E+00 8.2126000E-01
2.1367200E+00 0.0000000E+00 9.0282000E-01
2.1404800E+00 -4.7009000E-01 7.6877000E-01
1.4284700E+00 -4.9948000E-01 8.1479000E-01
1.4282600E+00 -8.1543000E-01 4.9756000E-01
2.1403300E+00 -7.6784000E-01 4.7067000E-01
1.4260000E+00 0.0000000E+00 9.5798000E-01
7.1305000E-01 0.0000000E+00 9.8871000E-01
7.1466000E-01 -5.1691000E-01 8.4100000E-01
7.1469000E-01 -8.4232000E-01 5.1482000E-01
-4.7182400E+00 1.8171000E-01 2.7587000E-01
-4.8324000E+00 2.1791000E-01 1.3313000E-01
-4.2410100E+00 2.8370000E-01 4.4400000E-01
-4.2426500E+00 4.4967000E-01 2.7299000E-01
-3.5547400E+00 5.9588000E-01 3.6771000E-01
-3.5550600E+00 3.7059000E-01 5.9401000E-01
-2.8492200E+00 4.3026000E-01 6.9701000E-01
-2.8491700E+00 6.9697000E-01 4.3021000E-01
-2.1404800E+00 4.7009000E-01 7.6877000E-01
-1.4284700E+00 4.9948000E-01 8.1479000E-01
-1.4282600E+00 8.1543000E-01 4.9756000E-01
-2.1403300E+00 7.6784000E-01 4.7067000E-01
-7.1466000E-01 5.1691000E-01 8.4100000E-01
0.0000000E+00 5.1135000E-01 8.5791000E-01
0.0000000E+00 8.5971000E-01 5.0827000E-01
-7.1469000E-01 8.4232000E-01 5.1482000E-01
4.8324000E+00 2.1791000E-01 1.3313000E-01
4.7182400E+00 1.8171000E-01 2.7587000E-01
4.2410100E+00 2.8370000E-01 4.4400000E-01
4.2426500E+00 4.4967000E-01 2.7299000E-01
3.5547400E+00 5.9588000E-01 3.6771000E-01
3.5550600E+00 3.7059000E-01 5.9401000E-01
2.8491700E+00 6.9697000E-01 4.3021000E-01
2.8492200E+00 4.3026000E-01 6.9701000E-01
2.1404800E+00 4.7009000E-01 7.6877000E-01
2.1403300E+00 7.6784000E-01 4.7067000E-01
1.4282600E+00 8.1543000E-01 4.9756000E-01
1.4284700E+00 4.9948000E-01 8.1479000E-01
7.1466000E-01 5.1691000E-01 8.4100000E-01
7.1469000E-01 8.4232000E-01 5.1482000E-01
-4.7191800E+00 -3.1896200E+00 -2.6947000E-01
-4.8346300E+00 -3.2196400E+00 -1.2677000E-01
-4.9677300E+00 -3.0000000E+00 -1.1107000E-01
-4.8278700E+00 -3.0000000E+00 -2.5912000E-01
-4.2389800E+00 -3.2884400E+00 -4.4189000E-01
-4.2403800E+00 -3.4538800E+00 -2.6760000E-01
-4.2258100E+00 -3.0000000E+00 -5.3299000E-01
-3.5389000E+00 -3.0000000E+00 -7.0636000E-01
-3.5533800E+00 -3.3733700E+00 -5.9275000E-01
-2.8476100E+00 -3.4312300E+00 -6.9671000E-01
-2.8476700E+00 -3.6982700E+00 -4.2858000E-01
-3.5529700E+00 -3.5964800E+00 -3.6763000E-01
-2.8421900E+00 -3.0000000E+00 -8.2150000E-01
-2.1351900E+00 -3.0000000E+00 -9.0296000E-01
-2.1393700E+00 -3.4719800E+00 -7.6755000E-01
-1.4275400E+00 -3.4990600E+00 -8.1505000E-01
-1.4275600E+00 -3.8152500E+00 -4.9793000E-01
-2.1394900E+00 -3.7689400E+00 -4.6963000E-01
-1.4252800E+00 -3.0000000E+00 -9.5803000E-01
-7.1250000E-01 -3.0000000E+00 -9.8872000E-01
-7.1440000E-01 -3.5136600E+00 -8.4295000E-01
0.0000000E+00 -3.5081300E+00 -8.5979000E-01
0.0000000E+00 -3.8585300E+00 -5.1030000E-01
-7.1439000E-01 -3.8422400E+00 -5.1496000E-01
0.0000000E+00 -3.0000000E+00 -1.0000000E+00
0.0000000E+00 -4.0000000E+00 0.0000000E+00
-7.1250000E-01 -3.9887200E+00 0.0000000E+00
-1.4251100E+00 -3.9580400E+00 0.0000000E+00
-2.1356600E+00 -3.9029200E+00 0.0000000E+00
-2.8424700E+00 -3.8214600E+00 0.0000000E+00
-3.5379900E+00 -3.7065600E+00 0.0000000E+00
-4.2249800E+00 -3.5332400E+00 0.0000000E+00
-4.8411700E+00 -3.2489000E+00 0.0000000E+00
-5.0000000E+00 -3.0000000E+00 0.0000000E+00
4.8278700E+00 -3.0000000E+00 -2.5912000E-01
4.9677300E+00 -3.0000000E+00 -1.1107000E-01
4.8346300E+00 -3.2196400E+00 -1.2677000E-01
4.7191800E+00 -3.1896200E+00 -2.6947000E-01
4.2403800E+00 -3.4538800E+00 -2.6760000E-01
4.2389800E+00 -3.2884400E+00 -4.4189000E-01
4.2258100E+00 -3.0000000E+00 -5.3299000E-01
3.5533800E+00 -3.3733700E+00 -5.9275000E-01
3.5389000E+00 -3.0000000E+00 -7.0636000E-01
3.5529700E+00 -3.5964800E+00 -3.6763000E-01
2.8476700E+00 -3.6982700E+00 -4.2858000E-01
2.8476100E+00 -3.4312300E+00 -6.9671000E-01
2.8421900E+00 -3.0000000E+00 -8.2150000E-01
2.1393700E+00 -3.4719800E+00 -7.6755000E-01
2.1351900E+00 -3.0000000E+00 -9.0296000E-01
2.1394900E+00 -3.7689400E+00 -4.6963000E-01
1.4275600E+00 -3.8152500E+00 -4.9793000E-01
1.4275400E+00 -3.4990600E+00 -8.1505000E-01
1.4252800E+00 -3.0000000E+00 -9.5803000E-01
7.1440000E-01 -3.5136600E+00 -8.4295000E-01
7.1250000E-01 -3.0000000E+00 -9.8872000E-01
7.1439000E-01 -3.8422400E+00 -5.1496000E-01
7.1250000E-01 -3.9887200E+00 0.0000000E+00
1.4251100E+00 -3.9580400E+00 0.0000000E+00
2.1356600E+00 -3.9029200E+00 0.0000000E+00
2.8424700E+00 -3.8214600E+00 0.0000000E+00
3.5379900E+00 -3.7065600E+00 0.0000000E+00
4.2249800E+00 -3.5332400E+00 0.0000000E+00
4.8411700E+00 -3.2489000E+00 0.0000000E+00
5.0000000E+00 -3.0000000E+00 0.0000000E+00
-4.8346300E+00 -2.7803600E+00 -1.2677000E-01
-4.7191800E+00 -2.8103800E+00 -2.6947000E-01
-4.2403800E+00 -2.5461200E+00 -2.6760000E-01
-4.2389800E+00 -2.7115600E+00 -4.4189000E-01
-3.5533800E+00 -2.6266300E+00 -5.9275000E-01
-3.5529700E+00 -2.4035200E+00 -3.6763000E-01
-2.8476700E+00 -2.3017300E+00 -4.2858000E-01
-2.8476100E+00 -2.5687700E+00 -6.9671000E-01
-2.1393700E+00 -2.5280200E+00 -7.6755000E-01
-2.1394900E+00 -2.2310600E+00 -4.6963000E-01
-1.4275600E+00 -2.1847500E+00 -4.9793000E-01
-1.4275400E+00 -2.5009400E+00 -8.1505000E-01
-7.1440000E-01 -2.4863400E+00 -8.4295000E-01
-7.1439000E-01 -2.1577600E+00 -5.1496000E-01
0.0000000E+00 -2.1414700E+00 -5.1030000E-01
0.0000000E+00 -2.4918700E+00 -8.5979000E-01
-7.1250000E-01 -2.0112800E+00 0.0000000E+00
0.0000000E+00 -2.0000000E+00 0.0000000E+00
-1.4251100E+00 -2.0419600E+00 0.0000000E+00
-2.1356600E+00 -2.0970800E+00 0.0000000E+00
-2.8424700E+00 -2.1785400E+00 0.0000000E+00
-3.5379900E+00 -2.2934400E+00 0.0000000E+00
-4.2249800E+00 -2.4667600E+00 0.0000000E+00
-4.8411700E+00 -2.7511000E+00 0.0000000E+00
4.7191800E+00 -2.8103800E+00 -2.6947000E-01
4.8346300E+00 -2.7803600E+00 -1.2677000E-01
4.2389800E+00 -2.7115600E+00 -4.4189000E-01
4.2403800E+00 -2.5461200E+00 -2.6760000E-01
3.5533800E+00 -2.6266300E+00 -5.9275000E-01
2.8476100E+00 -2.5687700E+00 -6.9671000E-01
2.8476700E+00 -2.3017300E+00 -4.2858000E-01
3.5529700E+00 -2.4035200E+00 -3.6763000E-01
2.1393700E+00 -2.5280200E+00 -7.6755000E-01
1.4275400E+00 -2.5009400E+00 -8.1505000E-01
1.4275600E+00 -2.1847500E+00 -4.9793000E-01
2.1394900E+00 -2.2310600E+00 -4.6963000E-01
7.1440000E-01 -2.4863400E+00 -8.4295000E-01
7.1439000E-01 -2.1577600E+00 -5.1496000E-01
7.1250000E-01 -2.0112800E+00 0.0000000E+00
1.4251100E+00 -2.0419600E+00 0.0000000E+00
2.1356600E+00 -2.0970800E+00 0.0000000E+00
2.8424700E+00 -2.1785400E+00 0.0000000E+00
3.5379900E+00 -2.2934400E+00 0.0000000E+00
4.2249800E+00 -2.4667600E+00 0.0000000E+00
4.8411700E+00 -2.7511000E+00 0.0000000E+00
-4.8278700E+00 -3.0000000E+00 2.5912000E-01
-4.9677300E+00 -3.0000000E+00 1.1107000E-01
-4.8346300E+00 -3.2196400E+00 1.2677000E-01
-4.7191800E+00 -3.1896200E+00 2.6947000E-01
-4.2403800E+00 -3.4538800E+00 2.6760000E-01
-4.2389800E+00 -3.2884400E+00 4.4189000E-01
-4.2258100E+00 -3.0000000E+00 5.3299000E-01
-3.5533800E+00 -3.3733700E+00 5.9275000E-01
-3.5389000E+00 -3.0000000E+00 7.0636000E-01
-3.5529700E+00 -3.5964800E+00 3.6763000E-01
-2.8476700E+00 -3.6982700E+00 4.2858000E-01
-2.8476100E+00 -3.4312300E+00 6.9671000E-01
-2.8421900E+00 -3.0000000E+00 8.2150000E-01
-2.1393700E+00 -3.4719800E+00 7.6755000E-01
-2.1351900E+00 -3.0000000E+00 9.0296000E-01
-2.1394900E+00 -3.7689400E+00 4.6963000E-01
-1.4275600E+00 -3.8152500E+00 4.9793000E-01
-1.4275400E+00 -3.4990600E+00 8.1505000E-01
-1.4252800E+00 -3.0000000E+00 9.5803000E-01
-7.1440000E-01 -3.5136600E+00 8.4295000E-01
-7.1250000E-01 -3.0000000E+00 9.8872000E-01
-7.1439000E-01 -3.8422400E+00 5.1496000E-01
0.0000000E+00 -3.8585300E+00 5.1030000E-01
0.0000000E+00 -3.5081300E+00 8.5979000E-01
0.0000000E+00 -3.0000000E+00 1.0000000E+00
4.7191800E+00 -3.1896200E+00 2.6947000E-01
4.8346300E+00 -3.2196400E+00 1.2677000E-01
4.9677300E+00 -3.0000000E+00 1.1107000E-01
4.8278700E+00 -3.0000000E+00 2.5912000E-01
4.2389800E+00 -3.2884400E+00 4.4189000E-01
4.2403800E+00 -3.4538800E+00 2.6760000E-01
4.2258100E+00 -3.0000000E+00 5.3299000E-01
3.5389000E+00 -3.0000000E+00 7.0636000E-01
3.5533800E+00 -3.3733700E+00 5.9275000E-01
2.8476100E+00 -3.4312300E+00 6.9671000E-01
2.8476700E+00 -3.6982700E+00 4.2858000E-01
3.5529700E+00 -3.5964800E+00 3.6763000E-01
2.8421900E+00 -3.0000000E+00 8.2150000E-01
2.1351900E+00 -3.0000000E+00 9.0296000E-01
2.1393700E+00 -3.4719800E+00 7.6755000E-01
1.4275400E+00 -3.4990600E+00 8.1505000E-01
1.4275600E+00 -3.8152500E+00 4.9793000E-01
2.1394900E+00 -3.7689400E+00 4.6963000E-01
1.4252800E+00 -3.0000000E+00 9.5803000E-01
7.1250000E-01 -3.0000000E+00 9.8872000E-01
7.1440000E-01 -3.5136600E+00 8.4295000E-01
7.1439000E-01 -3.8422400E+00 5.1496000E-01
-4.7191800E+00 -2.8103800E+00 2.6947000E-01
-4.8346300E+00 -2.7803600E+00 1.2677000E-01
-4.2389800E+00 -2.7115600E+00 4.4189000E-01
-4.2403800E+00 -2.5461200E+00 2.6760000E-01
-3.5533800E+00 -2.6266300E+00 5.9275000E-01
-2.8476100E+00 -2.5687700E+00 6.9671000E-01
-2.8476700E+00 -2.3017300E+00 4.2858000E-01
-3.5529700E+00 -2.4035200E+00 3.6763000E-01
-2.1393700E+00 -2.5280200E+00 7.6755000E-01
-1.4275400E+00 -2.5009400E+00 8.1505000E-01
-1.4275600E+00 -2.1847500E+00 4.9793000E-01
-2.1394900E+00 -2.2310600E+00 4.6963000E-01
-7.1440000E-01 -2.4863400E+00 8.4295000E-01
0.0000000E+00 -2.4918700E+00 8.5979000E-01
0.0000000E+00 -2.1414700E+00 5.1030000E-01
-7.1439000E-01 -2.1577600E+00 5.1496000E-01
4.8346300E+00 -2.7803600E+00 1.2677000E-01
4.7191800E+00 -2.8103800E+00 2.6947000E-01
4.2403800E+00 -2.5461200E+00 2.6760000E-01
4.2389800E+00 -2.7115600E+00 4.4189000E-01
3.5533800E+00 -2.6266300E+00 5.9275000E-01
3.5529700E+00 -2.4035200E+00 3.6763000E-01
2.8476700E+00 -2.3017300E+00 4.2858000E-01
2.8476100E+00 -2.5687700E+00 6.9671000E-01
2.1393700E+00 -2.5280200E+00 7.6755000E-01
2.1394900E+00 -2.2310600E+00 4.6963000E-01
1.4275600E+00 -2.1847500E+00 4.9793000E-01
1.4275400E+00 -2.5009400E+00 8.1505000E-01
7.1440000E-01 -2.4863400E+00 8.4295000E-01
7.1439000E-01 -2.1577600E+00 5.1496000E-01
1 2 3 4
1 4 5 6
1 6 7 2
7 8 9 10
7 10 11 2
7 6 12 8
12 13 14 8
12 6 5 15
12 15 16 13
16 17 18 13
18 19 20 21
18 21 14 13
18 17 22 19
22 23 24 19
24 25 26 27
24 27 20 19
24 23 28 25
27 26 29 30
27 30 31 20
31 32 21 20
32 33 14 21
33 9 8 14
11 34 3 2
35 36 37 38
39 40 35 38
37 41 39 38
42 43 44 41
37 45 42 41
44 46 39 41
44 47 48 46
49 40 39 46
48 50 49 46
48 51 52 50
53 54 55 51
48 47 53 51
55 56 52 51
55 57 58 56
59 26 25 57
55 54 59 57
25 28 58 57
60 29 26 59
54 61 60 59
54 53 62 61
53 47 63 62
47 44 43 63
37 36 64 45
4 3 65 66
67 5 4 66
65 68 67 66
69 70 71 68
65 72 69 68
71 73 67 68
71 74 75 73
15 5 67 73
75 16 15 73
75 76 17 16
77 78 79 76
75 74 77 76
79 22 17 76
79 80 23 22
81 82 83 80
79 78 81 80
83 28 23 80
84 85 82 81
78 86 84 81
78 77 87 86
77 74 88 87
74 71 70 88
65 3 34 72
89 90 36 35
89 35 40 91
89 91 92 90
92 93 94 95
92 95 96 90
92 91 97 93
97 98 99 93
97 91 40 49
97 49 50 98
50 52 100 98
100 101 102 103
100 103 99 98
100 52 56 101
56 58 104 101
104 83 82 105
104 105 102 101
104 58 28 83
105 82 85 106
105 106 107 102
107 108 103 102
108 109 99 103
109 94 93 99
96 64 36 90
110 111 112 113
114 115 110 113
112 116 114 113
10 9 117 116
112 11 10 116
117 118 114 116
117 119 120 118
121 115 114 118
120 122 121 118
120 123 124 122
125 126 127 123
120 119 125 123
127 128 124 123
127 129 130 128
131 132 133 129
127 126 131 129
133 134 130 129
30 29 132 131
126 31 30 131
126 125 32 31
125 119 33 32
119 117 9 33
112 111 34 11
135 136 137 138
135 138 139 140
135 140 141 136
141 142 43 42
141 42 45 136
141 140 143 142
143 144 145 142
143 140 139 146
143 146 147 144
147 148 149 144
149 150 151 152
149 152 145 144
149 148 153 150
153 154 155 150
155 133 132 156
155 156 151 150
155 154 134 133
156 132 29 60
156 60 61 151
61 62 152 151
62 63 145 152
63 43 142 145
45 64 137 136
157 158 111 110
157 110 115 159
157 159 160 158
160 161 70 69
160 69 72 158
160 159 162 161
162 163 164 161
162 159 115 121
162 121 122 163
122 124 165 163
165 166 167 168
165 168 164 163
165 124 128 166
128 130 169 166
169 170 171 172
169 172 167 166
169 130 134 170
172 171 85 84
172 84 86 167
86 87 168 167
87 88 164 168
88 70 161 164
72 34 111 158
138 137 173 174
175 139 138 174
173 176 175 174
95 94 177 176
173 96 95 176
177 178 175 176
177 179 180 178
146 139 175 178
180 147 146 178
180 181 148 147
182 183 184 181
180 179 182 181
184 153 148 181
184 185 154 153
186 171 170 185
184 183 186 185
170 134 154 185
106 85 171 186
183 107 106 186
183 182 108 107
182 179 109 108
179 177 94 109
173 137 64 96
187 188 189 190
187 191 192 188
187 190 193 191
193 194 195 191
195 196 197 198
195 198 192 191
195 194 199 196
199 200 201 196
201 202 203 204
201 204 197 196
201 200 205 202
205 206 207 202
207 208 209 210
207 210 203 202
207 206 211 208
210 209 212 213
210 213 214 203
214 215 204 203
215 216 197 204
216 217 198 197
217 218 192 198
218 219 188 192
219 220 189 188
221 222 223 224
223 225 226 224
226 227 221 224
226 228 229 227
230 231 232 228
226 225 230 228
232 233 229 228
232 234 235 233
236 237 238 234
232 231 236 234
238 239 235 234
238 240 241 239
242 209 208 240
238 237 242 240
208 211 241 240
243 212 209 242
237 244 243 242
237 236 245 244
236 231 246 245
231 230 247 246
230 225 248 247
225 223 249 248
223 222 250 249
190 189 251 252
251 253 254 252
254 193 190 252
254 255 194 193
256 257 258 255
254 253 256 255
258 199 194 255
258 259 200 199
260 261 262 259
258 257 260 259
262 205 200 259
262 263 206 205
264 265 266 263
262 261 264 263
266 211 206 263
267 268 265 264
261 269 267 264
261 260 270 269
260 257 271 270
257 256 272 271
256 253 273 272
253 251 274 273
251 189 220 274
275 276 222 221
275 277 278 276
275 221 227 277
227 229 279 277
279 280 281 282
279 282 278 277
279 229 233 280
233 235 283 280
283 284 285 286
283 286 281 280
283 235 239 284
239 241 287 284
287 266 265 288
287 288 285 284
287 241 211 266
288 265 268 289
288 289 290 285
290 291 286 285
291 292 281 286
292 293 282 281
293 294 278 282
294 295 276 278
295 250 222 276
296 297 298 299
298 300 301 299
301 302 296 299
301 303 304 302
305 306 307 303
301 300 305 303
307 308 304 303
307 309 310 308
311 312 313 309
307 306 311 309
313 314 310 309
313 315 316 314
317 318 319 315
313 312 317 315
319 320 316 315
213 212 318 317
312 214 213 317
312 311 215 214
311 306 216 215
306 305 217 216
305 300 218 217
300 298 219 218
298 297 220 219
321 322 323 324
321 325 326 322
321 324 327 325
327 328 329 325
329 330 331 332
329 332 326 325
329 328 333 330
333 334 335 330
335 336 337 338
335 338 331 330
335 334 339 336
339 340 341 336
341 319 318 342
341 342 337 336
341 340 320 319
342 318 212 243
342 243 244 337
244 245 338 337
245 246 331 338
246 247 332 331
247 248 326 332
248 249 322 326
249 250 323 322
343 344 297 296
343 345 346 344
343 296 302 345
302 304 347 345
347 348 349 350
347 350 346 345
347 304 308 348
308 310 351 348
351 352 353 354
351 354 349 348
351 310 314 352
314 316 355 352
355 356 357 358
355 358 353 352
355 316 320 356
358 357 268 267
358 267 269 353
269 270 354 353
270 271 349 354
271 272 350 349
272 273 346 350
273 274 344 346
274 220 297 344
324 323 359 360
359 361 362 360
362 327 324 360
362 363 328 327
364 365 366 363
362 361 364 363
366 333 328 363
366 367 334 333
368 369 370 367
366 365 368 367
370 339 334 367
370 371 340 339
372 357 356 371
370 369 372 371
356 320 340 371
289 268 357 372
369 290 289 372
369 368 291 290
368 365 292 291
365 364 293 292
364 361 294 293
361 359 295 294
359 323 250 295
都看到这了,点个赞再走吧~