import numpy as np
from fuction import *
from classNN_for_parallel import NN_P
# 神经网络
class NN:
def __init__(self, ni, nh, no):# 输入层、隐含层、输出层的节点数
self.ni = ni + 1 # 偏置节点
self.nh = nh
self.no = no
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# 设权重为随机值
self.wi = makeMatrix(self.ni, self.nh)
self.wo = makeMatrix(self.nh, self.no)
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-1, 1)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-1, 1)
# 设置偏置
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError('与输入层节点数不符!')
# 激活输入层
for i in range(self.ni-1):
self.ai[i] = inputs[i]
# 激活隐藏层
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum = sum + self.ai[i] * self.wi[i][j]
self.ah[j] = sigmoid(sum)
# 激活输出层
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum = sum + self.ah[j] * self.wo[j][k]
self.ao[k] = sigmoid(sum)
return self.ao[:]
#反向传播
def backPropagate(self, targets, N):# N: 学习速率
if len(targets) != self.no:
raise ValueError('与输出层节点数不符!')
# 计算输出层的误差
output_deltas = [0.0] * self.no
for k in range(self.no):
error = targets[k]-self.ao[k]
output_deltas[k] = dsigmoid(self.ao[k]) * error
# 计算隐藏层的误差
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error = error + output_deltas[k]*self.wo[j][k]
hidden_deltas[j] = dsigmoid(self.ah[j]) * error
# 更新输出层权重
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change
self.co[j][k] = change
# 更新输入层权重
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j]*self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change
self.ci[i][j] = change
# 计算误差
error = 0.0
for k in range(len(targets)):
error = error + 0.5*(targets[k]-self.ao[k])**2
return error,self.wi,self.wo,self.ci,self.co
# def weights(self):
# print('输入层权重:')
# for i in range(self.ni):
# print(self.wi[i])
# print()
# print('输出层权重:')
# for j in range(self.nh):
# print(self.wo[j])
def train(self, patterns, N=0.0005):
train_size = len(patterns)
batch_size = 3 #batch_size修改
error = 1
count = 0
#前期SGD
while error > 0.01:
i = np.random.randint(0, len(patterns))
p = patterns[i]
# print('p',p)
inputs = p[0]
targets = p[1]
self.update(inputs)
error,_,_,_,_ = self.backPropagate(targets, N)
count = count + 1
if count % 100 == 0:
print('第一阶段误差 %-.5f' % error)
# 中期mini_batch
while error>0.00001:
batch_mask = np.random.choice(train_size, batch_size, replace=False)
p_batch = []
for i in batch_mask:
p_batch.append(patterns[i])
for p in p_batch:
inputs = p[0]
# print('input',inputs)
targets = p[1]
self.update(inputs)
error,wi1,wo1,ci1,co1 = self.backPropagate(targets, N)
count = count + 1
print('第二阶段误差 %-.5f' % error)
print('迭代次数',count)