-
求解一介常微分方程 dydt=ay\frac{dy}{dt}=aydtdy=ay
syms y(t) a; eqn = diff(y, t) == a*y; S = dsolve(eqn)增加条件,初值 y(0)=5y(0) = 5y(0)=5
syms y(t) a; eqn = diff(y, t) == a*y; cond = y(0) = 5; S = dsolve(eqn, cond) -
求解二阶常微分方程 d2ydu2=ay\frac{d^2y}{du^2}=aydu2d2y=ay
syms y(t) a; eqn = diff(y, t, 2) == a*y; S = dsolve(eqn)增加条件, y(0)=b,y′(0)=1y(0) = b, y'(0) = 1y(0)=b,y′(0)=1
syms y(t) a b; eqn = diff(y, t, 2) == a*y; Dy = diff(y, t); cond = [y(0) == b, Dy(0) == 1]; S = dsolve(eqn, cond) -
求解常微分方程组
dydt=zdzdt=−y \frac{dy}{dt}=z\\ \frac{dz}{dt}=-y dtdy=zdtdz=−ysyms y(t) z(t) eqns = [diff(y, t) == z, diff(z, t) == -y]; s = dsolve(eqns)
求简单微分方程
最新推荐文章于 2025-12-04 16:26:39 发布
该博客展示了如何使用符号计算工具解决不同类型的微分方程。首先,它演示了解一阶常微分方程dy/dt=ay的步骤,并添加了初始条件y(0)=5。接着,它转向二阶常微分方程d²y/du²=ay,给出边界条件y(0)=b和dy/du(0)=1。最后,博客解决了常微分方程组dy/dt=z和dz/dt=-y的解。所有解都通过符号计算软件完成。
2767





