题意:将一个十进制数转化为二进制后,统计这一位是1,且下一位也是1的位数为这个数的权值,例如,6的二进制为110,第一1的下一位也是1,所以6的权值为1。给一个十进制数n,求0到n所有的十进制数的权值和。
题解:数位dp,可以参考算法合集之《浅谈数位类统计问题》,用树形图来理解就容易多了。
#include <bits/stdc++.h>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
#define ll long long
#define SZ(x) ((int)(x).size())
#define ALL(v) (v).begin(), (v).end()
#define foreach(i, v) for (__typeof((v).begin()) i = (v).begin(); i != (v).end(); ++ i)
#define reveach(i, v) for (__typeof((v).rbegin()) i = (v).rbegin(); i != (v).rend(); ++ i)
#define REP(i,a,n) for ( int i=a; i<int(n); i++ )
#define FOR(i,a,n) for ( int i=n-1; i>= int(a);i-- )
#define lson rt<<1, L, m
#define rson rt<<1|1, m, R
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define mp(x, y) make_pair(x, y)
#define pb(x) push_back(x)
#define fi first
#define se second
#define CLR(a, b) memset(a, b, sizeof(a))
#define Min(a, b) a = min(a, b)
#define Max(a, b) a = max(a, b)
const int maxn = 50;
int T;
int kase;
int n;
int a[maxn];
ll dp[maxn][2];
ll cnt[maxn];
void ini(){
REP(i, 1, maxn){
dp[i][1] = dp[i-1][0] + dp[i-1][1] + (1 << (i - 1));
dp[i][0] = dp[i-1][0] + dp[i-1][1];
}
}
ll solve(){
CLR(a, 0);
CLR(cnt, 0);
ll res = 0;
n ++;
int m = 0;
while(n){
a[m ++] = n % 2;
n /= 2;
}
REP(i, 0, m){
cnt[i+1] = cnt[i];
if(a[i]) res += dp[i][0], cnt[i+1] += (1 << i);
if(a[i] && a[i+1]) res += cnt[i];
}
return res;
}
int main(){
#ifdef ac
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
scanf("%d", &T);
ini();
while(T--){
scanf("%d", &n);
printf("Case %d: %lld\n", ++ kase, solve());
}
return 0;
}