Computer Vision重要期刊论文

本文精选了21世纪初计算机视觉领域的20篇最具影响力论文,涵盖了TPAMI、IJCV、TIP等知名期刊,包括特征点检测、图像分割、主动轮廓等多个方向,涉及领域专家对每篇文章进行了深度点评。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


21世纪初最有影响力的20篇计算机视觉期刊论文

选取论文的原则:

(1)期刊论文,主要来源于以下期刊:TPAMI,IJCV,TIP,CVIU,IVC,MVA,PR,JMIV,IJPRAI…

(2)发表在2000年以后

(3)SCI检索次数大于1000,来源于Web of Science数据库,2012年12月初的检索结果

 

Top 20 榜单如下:  

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov, 2004. (Cited=5663)

[2] J. B. Shi, and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, Aug, 2000. (Cited=2165)

[3] T. F. Chan, and L. A. Vese, “Active contours without edges,” IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 266-277, Feb, 2001. (Cited=2153)

[4] D. Comaniciu, and P. Meer, “Mean shift: A robust approach toward feature space analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 603-619, May, 2002. (Cited=1910)

[5] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr, 2004. (Cited=1879)

[6] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-based image retrieval at the end of the early years,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349-1380, Dec, 2000. (Cited=1697)

[7] P. Viola, and M. J. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May, 2004. (Cited=1634)

[8] A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: A review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-37, Jan, 2000. (Cited=1546)

[9] Z. Y. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov, 2000. (Cited=1516)

[10] B. Zitova, and J. Flusser, “Image registration methods: a survey,” Image and Vision Computing, vol. 21, no. 11, pp. 977-1000, Oct, 2003. (Cited=1422)

[11] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using shape contexts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522, Apr, 2002. (Cited=1321)

[12] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET evaluation methodology for face-recognition algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-1104, Oct, 2000. (Cited=1298)

[13] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov, 2001. (Cited=1197)

[14] D. Scharstein, and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1-3, pp. 7-42, Apr-Jun, 2002. (Cited=1174)

[15] K. Mikolajczyk, and C. Schmid, “A performance evaluation of local descriptors,” IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 27, no. 10, pp. 1615-1630, Oct, 2005. (Cited=1166)

[16] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564-577, May, 2003. (Cited=1109)

[17] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, Jul, 2002. (Cited=1076)

[18] C. Stauffer, and W. E. L. Grimson, “Learning patterns of activity using real-time tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747-757, Aug, 2000. (Cited=1070)

[19] M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. 24, no. 1, pp. 34-58, Jan, 2002. (Cited=1032)

[20] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, Jun, 2001. (Cited=989)

 

补充2篇TPAMI,山老师推荐的,南理工杨健老师的2DPCA和浙大何晓飞老师的LPP。

[1] J. Yang, D. Zhang, A. Frangi, and J. Yang, “Two-dimensional PCA: a new approach to appearance-based face representation and recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131-137, Jan, 2004. (Cited=625)

[2] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang, “Face recognition using Laplacianfaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 3, pp. 328-340, Mar, 2005. (Cited=724)

 

简单小结:

3篇IJCV,14篇TPAMI,2篇TIP,1篇IVC倒是有些意外,不过是综述性质的文章,也是情理之中。

欢迎各位大牛对每篇文章进行点评。

### IET Computer Vision 期刊投稿指南和支持信息 对于希望向《IET Computer Vision》期刊提交论文的研究人员而言,了解该期刊的具体要求至关重要。此期刊属于广义计算机科学及相关领域内的学术出版物之一[^1]。 #### 投稿前准备 在正式提交之前,作者应仔细阅读并遵循目标期刊发布的最新版作者指南。这通常涵盖了文章结构、格式化标准以及任何特定于该期刊的要求。此外,《IET Computer Vision》鼓励潜在贡献者访问其官方网站获取最权威的信息更新和详细的指导文件[^2]。 #### 文章类型与主题范围 本刊接受多种类型的稿件,包括但不限于原创研究论文、综述文章和技术报告等。特别关注的是那些涉及视觉计算理论及其应用方面的工作,比如图像处理、模式识别等领域内具有创新性的研究成果[^3]。 #### 审查流程说明 一旦收到新的手稿,《IET Computer Vision》编辑部会先进行初步筛选以确认是否满足基本条件;通过初筛的手稿将被送交至少两位独立评审专家进行全面评估。整个同行评议过程旨在保证发表内容的质量和可靠性。值得注意的是,在回应审稿人的反馈时,应当参照具体期刊给出的意见回复模板来组织文字表达,从而提高沟通效率并加快决策进程。 #### 出版伦理声明 为了维护良好的科研环境,《IET Computer Vision》严格遵守国际公认的出版道德准则。所有参与者——无论是作者还是审稿人都需承诺诚信行事,杜绝任何形式的不端行为如抄袭剽窃、伪造数据等违反职业道德的现象发生。 ```python # Python代码示例仅用于展示如何编写符合PEP8规范的Python程序,并非实际操作步骤的一部分。 def prepare_submission(): """ Prepare a manuscript according to the guidelines of IET Computer Vision. Returns: str: A message indicating that preparation is complete. """ check_guidelines() format_paper() ensure_ethical_standards() return "Manuscript prepared successfully." ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值