LeetCode First Missing Positive

本文介绍了一种在未排序整数数组中查找第一个缺失正整数的算法,该算法能在O(n)时间内运行并使用常数空间。通过示例说明了如何去除非正数并标记已出现的正数。

题目:

Given an unsorted integer array, find the first missing positive integer.

For example,
Given [1,2,0] return 3,
and [3,4,-1,1] return 2.

Your algorithm should run in O(n) time and uses constant space.

class Solution {
public:
    int firstMissingPositive(int A[], int n) {
    	removeNonPositive(A, n);
    	//使用负号记下是否出现
		for(int i = 0; i < n; i++) {
			if(abs(A[i]) <= n) {
				if (A[abs(A[i])-1] > 0)
					A[abs(A[i])-1] *= -1;
			}
		} 
		for(int i = 0; i < n; i++)
			if(A[i] > 0)
				return i+1;
		return n+1;
    }
private:
	//去除数组中小于等于0的数 
	void removeNonPositive(int A[], int &n) {
		int k = 0;
		for(int i = 0; i < n; i++) {
			if(A[i] > 0)
				A[k++] = A[i];
		}
		n = k;
	}
};


内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值