LeetCode Unique Paths II

本文介绍了一个Unique Paths问题的进阶版,即在网格中存在障碍物的情况下,计算从起点到终点的不同路径数量。文章提供了C++实现代码,通过动态规划的方法解决了这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

class Solution {
public:
	int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
		int m = obstacleGrid.size();
		int n = obstacleGrid[0].size();
		f[0][0] = obstacleGrid[0][0] == 0 ? 1 : 0;
		for (int i = 1; i < m; i++)
			f[i][0] = obstacleGrid[i][0] == 0 ? f[i-1][0] : 0;
		for (int j = 1; j < n; j++)
			f[0][j] = obstacleGrid[0][j] == 0 ? f[0][j-1] : 0;
		for (int i = 1; i < m; i++) {
			for (int j = 1; j < n; j++) {
				f[i][j] = obstacleGrid[i][j] == 0 ? f[i - 1][j] + f[i][j - 1] : 0;
			}
		}
		return f[m - 1][n - 1];
	}
private:
	int f[100][100];
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值