题目:
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
思想:n个节点除去跟节点还有n-1个节点,左子树的节点数为0,1,...,相应的右子树的节点数为n-1,n-2,...0;
则f(n) = f(0)f(n-1)+f(1)f(n-2)+...+f(n-2)f(n-1)+f(n-1)f(1)
class Solution {
public:
int numTrees(int n) {
if(n == 0)
return 1;
if(n == 1)
return 1;
if(n >= 2) {
int sum = 0;
for(int i = 0; i < n; i++)
sum += numTrees(i)* numTrees(n-1-i);
return sum;
}
}
};
本文介绍了一种递归算法来计算对于给定数值n,有多少种结构上独特的二叉搜索树(BST)。通过实例演示了当n等于3时,共有5种不同的BST形态,并详细解释了递归求解思路。
464

被折叠的 条评论
为什么被折叠?



