重复覆盖模板题。
1为列,可以操作的为行
#include<cstdio>
#include<cstring>
using namespace std;
int num[20][20];
int bmap[20][20];
const int MaxM = 15*15+10;
const int MaxN = 15*15+10;
const int maxnode = MaxN * MaxM;
const int INF = 0x3f3f3f3f;
struct DLX
{
int n,m,size;
int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
int H[MaxN],S[MaxM];
int ansd;
void init(int _n,int _m)
{
n = _n;
m = _m;
for(int i = 0;i <= m;i++)
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i-1;
R[i] = i+1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1;i <= n;i++)H[i] = -1;
}
void Link(int r,int c)
{
++S[Col[++size]=c];
Row[size] = r;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r] < 0)H[r] = L[size] = R[size] = size;
else
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
}
void remove(int c)
{
for(int i = D[c];i != c;i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
}
void resume(int c)
{
for(int i = U[c];i != c;i = U[i])
L[R[i]] = R[L[i]] = i;
}
bool v[MaxM];
int f()
{
int ret = 0;
for(int c = R[0]; c != 0;c = R[c])v[c] = true;
for(int c = R[0]; c != 0;c = R[c])
if(v[c])
{
ret++;
v[c] = false;
for(int i = D[c];i != c;i = D[i])
for(int j = R[i];j != i;j = R[j])
v[Col[j]] = false;
}
return ret;
}
void Dance(int d)
{
if(d + f() >= ansd)return;
if(R[0] == 0)
{
if(d < ansd)ansd = d;
return;
}
int c = R[0];
for(int i = R[0];i != 0;i = R[i])
if(S[i] < S[c])
c = i;
for(int i = D[c];i != c;i = D[i])
{
remove(i);
for(int j = R[i];j != i;j = R[j])remove(j);
Dance(d+1);
for(int j = L[i];j != i;j = L[j])resume(j);
resume(i);
}
}
}dlx;
int main()
{
int n,m,a,b;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(bmap,0,sizeof(bmap));
int sz = 0;
for(int i=0;i<n;i++)
for(int j=0;j<m;j++){
scanf("%d",&num[i][j]);
if(num[i][j]==1) bmap[i][j] = ++sz;
}
dlx.init(n*m,sz);
scanf("%d%d",&a,&b); int tot = 1;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
{
for(int x=0;x<a&&i+x<n;x++)
for(int y =0;y<b&&j+y<m;y++)
if(bmap[i+x][j+y])
dlx.Link(tot,bmap[i+x][j+y]);
tot++;
}
}
dlx.ansd = n*m+1;
dlx.Dance(0);
printf("%d\n",dlx.ansd);
}
return 0;
}
本文介绍了一种使用DLX算法解决重复覆盖模板题的方法。通过定义结构体DLX,实现了包括初始化、链接、移除和恢复等核心操作。针对具体问题,如给定矩阵中寻找最优覆盖方案,该算法能有效求解。
408

被折叠的 条评论
为什么被折叠?



