很容易想到,二分答案。
每次根据半径建好0,1矩阵。
然后就是DLX可重复覆盖的模板
#include<cstdio>
#include<cstring>
#include<cmath>
double x[55],y[55],X[55],Y[55];
const int MN=1005;
const int MM=1005;
const int MNN=1e5+5+MM; //最大点数
const double eps = 1e-9;
int n,m,k;
struct DLX
{
int n,m,size;
int U[MM],D[MM],R[MM],L[MM],Row[MM],Col[MM];
int H[MM],S[MM];
int ands,ans[MM];
void init(int _n,int _m)
{
n = _n;
m = _m;
for(int i = 0;i <= m;i++)
{
S[i] = 0;
U[i] = D[i] = i;
L[i] = i-1;
R[i] = i+1;
}
R[m] = 0; L[0] = m;
size = m;
for(int i = 1;i <= n;i++)
H[i] = -1;
}
void Link(int r,int c)
{
++S[Col[++size]=c];
Row[size] = r;
D[size] = D[c];
U[D[c]] = size;
U[size] = c;
D[c] = size;
if(H[r] < 0)H[r] = L[size] = R[size] = size;
else
{
R[size] = R[H[r]];
L[R[H[r]]] = size;
L[size] = H[r];
R[H[r]] = size;
}
}
void remove(int c)
{
for(int i = D[c];i != c;i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
}
void resume(int c)
{
for(int i = U[c];i != c;i = U[i])
L[R[i]]=R[L[i]]=i;
}
bool v[MM];
int f()
{
int ret = 0;
for(int c = R[0];c != 0;c = R[c])v[c] = true;
for(int c = R[0];c != 0;c = R[c])
if(v[c])
{
ret++;
v[c] = false;
for(int i = D[c];i != c;i = D[i])
for(int j = R[i];j != i;j = R[j])
v[Col[j]] = false;
}
return ret;
}
bool Dance(int d)
{
if(d + f() > k)return false;
if(R[0] == 0)return d <= k;
int c = R[0];
for(int i = R[0];i != 0;i = R[i])
if(S[i] < S[c])
c = i;
for(int i = D[c];i != c;i = D[i])
{
remove(i);
for(int j = R[i];j != i;j = R[j])remove(j);
if(Dance(d+1))return true;
for(int j = L[i];j != i;j = L[j])resume(j);
resume(i);
}
return false;
}
}dlx;
double cla(int a,int b)
{
return sqrt((X[a]-x[b])*(X[a]-x[b])+(Y[a]-y[b])*(Y[a]-y[b]));
}
bool check(double mid)
{
dlx.init(m,n);
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(cla(i,j)-mid<=eps)
dlx.Link(i,j);
}
}
dlx.ands = -1;
if(dlx.Dance(0)) return true;
return false;
}
int main()
{
int cases;
scanf("%d",&cases);
while(cases--)
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&x[i],&y[i]);
for(int i=1;i<=m;i++)
scanf("%lf%lf",&X[i],&Y[i]);
double l = 0,r = 10000000,mid;
for(int i=0;i<100;i++)
{
mid = (l+r)/2;
bool flag = check(mid);
//printf("%f %d\n",mid,flag);
if(flag) r = mid-eps;
else l = mid+eps;
}
printf("%.6lf\n",r);
}
return 0;
}