124. Binary Tree Maximum Path Sum

本文详细解析了如何寻找二叉树中的最大路径和问题,通过递归算法结合动态规划思想,阐述了求解过程中的关键步骤及注意事项。

Given a binary tree, find the maximum path sum.

For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.

For example:
Given the below binary tree,

       1
      / \
     2   3

Return 6.

对于这个题,貌似网上并没有太详细的解释,所以我决定写一篇比较详细的。主要参考博友喜刷刷的思路。

举个例子说明吧:


1. 假设我们现在站在根节点-2的位置上。此时有两种最大路径和的可能:

a:左子树 + -2 + 右子树

b:max(左子树, 右子树) + -2;

2. 然后我们移动到左子树-7的位置上。同样的有两种可能:

a:左子树 + -7 + 右子树 = 4 + -7 + 10 = 7

b:max(左子树, 右子树) + -7 = max(4, 10) + -7 = 3

由于1中的两种情况都需要知道左子树和右子树的值,到底要把2中的哪个数字返回给步骤1呢?答案是:3

因为如果我们返回7给步骤1,那意味着我们在-2的左子树中选择了一条“左-根-右”格式的子树,也就是这条路径变成了:(-2) - (4) - (-7) - (10),然而-2是无法直接到达4 或者10的,就是中间出现了回路。换言之要返回给-2的,一定是“左-根”或者“根-右”的形式,这样才保证不会出现回路。

返回了(-7) - (10) 的和给-2后,还要考虑一个问题:可能刚才那个不能返回的“左-跟-右”的路径就是最大的值,因为节点可能是负数,所以用一个变量来保存对于每一个节点的“左-根-右”形式的路径和。

3. 当我们返回到根节点-2的位置的时候,左边的最大路径为(-7) - (10)= 3,右边最大路径为(3),我们开始讨论那两种情况:

a:左子树 + -2 + 右子树 = 3 + -2 + 3 = 4 即:10 - (-7) - (-2) - 3

b:max(左子树, 右子树) + -2 = max(3, 3) + -2 = 1 即:10 - (-7)-(-2) 或者 (-2)- 3

然而实际上的最大值应该是我们已经保存的4 -(-7)- 10 = 7这条路径。

注意:然而事实上答案是错的,因为节点10自己比所有路径的和都大,所以根据这个图,答案应该是10,举这个例子就是为了帮助理解,如果有小伙伴可以帮我举一个更合适的例子,感激不尽,也希望不会对大家造成误导。

到这里基本思路说完了,可能还是让大家觉得很晕,看看代码也许就明白了。请相信,我尽力了。。。

class Solution {
public:
    int maxPathSum(TreeNode* root) {
        int maxSum = INT_MIN;
        int whatever = findMax(root, maxSum);
        return maxSum;
    }
    int findMax(TreeNode* root, int& maxSum) {
        if (root == NULL) return 0;
        int left = 0, right = 0;
        if (root->left != NULL) {
            left = findMax(root->left, maxSum);
        }
        if (root->right != NULL) {
            right = findMax(root->right, maxSum);
        }
        int left_or_right_root = max(left, right) + root->val;
        int left_root_right = left + root->val + right;
        maxSum = max(maxSum, max(left_or_right_root, left_root_right));
        return max(0, left_or_right_root);
    }
};


1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值