首先要理解堆的含义:要么所有节点都不大于其子孩子节点数据,要么都不小于其子孩子节点数据
堆排序的核心思想:就是要满足所有节点都满足上面两点,如何完成,看下面
堆排序的步骤:
1.首先要建成一个大顶堆或者小顶堆,在建的过程中其实就是调整节点的位置,首先要从最后最后一个节点的母亲节点开始,按照堆的含义调整。为什么不是最后一个或者其他?因为要保证完整性和不必要性,所以只需从最后一个的母亲节点开始即可(下面的堆默认存在顺序结构,从索引0开始的,所以有些二叉树的特性请查阅二叉树),直至索引节点为0的节点。调整完成后即成为一个堆,但是这里的数据并没有排序好,所以下一部调整顺序。
2.从最后一个数据开始,与第一个数据进行交换,然后按照堆的含义调整第一个数据。为什么先选择最后一个数据?因为默认情况下,最后一个或者是较大或者是较小,可以满足调整要求。这时就考虑当前所有数据减去最后一个,因为这个已是最大或者是最小,不必再考虑.。直至调整没有任何数据,此时已完成排序。
具体图例不再标识,有此爱好可以参考其他书籍或者网上的介绍,下面看堆排序代码:
int HeapSort(MergeType* L)
{
int i = 0;
if (!L->elem)
{
return -1;
}
//创建堆
for (int i = L->len/2-1; i >= 0; i--)
{
HeapAdjust(L, i, L->len-1);
}
//堆排序
for (i = L->len-1; i >= 0; i-- )
{
swap(L->elem[i], L->elem[0]);
HeapAdjust(L, 0, i-1);
}
return 0;
}
注意:
1)由于父子节点的关系,for循环第一个数据索引其实是L,len-1,但是其父母节点(i)与 当前节点(p)的关系:p = 2i+1 或者2i+2; 如果存储数据的节点第一个索引不是0而是1,这里p=2i或者p=2i+1,请参看有关书籍的证明