这3个大数据可视化的应用,说出了行业的真相

本文探讨了大数据可视化的重要性及其三种常见形式:数据分析可视化、趋势可视化和工业生产可视化。这些形式帮助用户通过清晰的视觉展示深入理解数据,提高决策效率。

互联网的价值不仅仅在于实现万物互联,还在于它实现了人类的生产和消费行为数据化,将人类带入了大数据时代。对大数据的有效应用,可以提升全人类生产、交易、融资和流通等各个环节的效率,而大数据可视化是实现这一步的重要一环。

大数据可视化是大数据内在价值的最终呈现手段,它利用各类图表、趋势图、视觉效果将巨大的、复杂的、枯燥的、潜逻辑的数据展现出来,使用户发现内在规律,进行深度挖掘,指导经营决策。

  康拓普大数据可视化平台

目前,大数据可视化包括:数据分析可视化、趋势可视化、工业生产可视化等3种常见的形式,它可以帮助用户更加深刻地透过数据看清本质规律,发现行业的真相。

1、数据分析可视化——提升用户的决策效率

数据分析可视化广泛用于政府、企业经营分析,包括企业的财务分析、供应链分析、销售生产分析、客户关系分析等,将企业经营所产生的所有有价值数据集中在一个系统里集中体现,可用于商业智能、政府决策、公众服务、市场营销等领域。

通过采集相关数据,进行加工并从中提取有商业价值的信息,服务于管理层、业务层,指导经营决策。数据分析可视化负责直接与决策者进行交互,是一个实现了数据的浏览和分析等操作的可视化、交互式的应用。它对于决策人获取决策依据、进行科学的数据分析、辅助决策人员进行科学决策显得十分重要。因此,数据分析可视化系统对于提升组织决策的判断力、整合优化企业信息资源和服务、提高决策人员的工作效率等具有显着的意义。

2、趋势可视化——有效支撑科学判断

趋势可视化是在特定环境中,对随时间推移而不断动作并变化的目标实体进行觉察、认知、理解,最终展示整体态势。此类大数据可视化应用通过建立复杂的仿真环境,通过大量数据多维度的积累,可以直观、灵活、逼真地展示宏观态势,从而让决策者很快掌握某一领域的整体态势、特征,从而做出科学判断和决策。

趋势可视化可应用于卫星运行监测、航班运行情况、气候天气、股票交易、交通监控、用电情况等众多领域。例如:卫星可视化可以通过将太空内所有卫星的运行数据进行可视化展示,大众可以一目了然卫星运行。气候天气可视化可以将该地区的大气气象数据进行展示,让用户清楚看到天气变化。

3、工业生产可视化——新一轮制造革命的核心竞争力

工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,生产线的高速运转则对数据的实时性要求也更高。破解这些大数据就是企业在新一轮制造革命中赢得竞争力的钥匙。因此,工业生产可视化系统是工业制造业的最佳选择。

工业生产可视化是将虚拟现实技术有机融入了工业监控系统,系统展现界面以生产厂房的仿真场景为基础,对各个工段、重要设备的形态都进行复原,作业流转状态可以在厂房视图当中直接显示。在单体设备视图中,机械设备的运行模式直接以仿真动画的形式展现,通过图像、三维动画以及计算机程控技术与实体模型相融合,实现对设备的可视化表达,使管理者对其所管理的设备有形象具体的概念。同时,对设备运行中产生的所有参数一目了然,从而大大减少管理者的劳动强度,提高管理效率和管理水平。

大数据可视化在未来必将大规模、深入的应用,这是趋势,不可阻挡。但是,从产业信息安全角度考虑,中国必须拥有自主研发的大数据可视化产品,以保障国家及企业信息安全。康拓普大数据洞察平台,正是一款值得信赖的国产大数据可视化工具

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值