Catch That Cow
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 16157 Accepted Submission(s): 4837
Problem Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4HintThe fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
Source
Recommend
好像没什么难度,标准的BFS过了。DFS应该也可以的。
#include <iostream>
#include <cstdio>
#include <ctime>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 1e5+10;
int n,k;
bool used[maxn<<1];
struct node {
int pos,time;
}p,q;
queue<node>myqueue;
int bfs(){
p.pos = n;
p.time = 0;
while (!myqueue.empty()) myqueue.pop();
myqueue.push(p);
while (!myqueue.empty()) {
p = myqueue.front();
myqueue.pop();
if (p.pos == k) return p.time;
if (p.pos<k){
q.pos = p.pos-1;
q.time = p.time+1;
if (q.pos>=0 ) {
if (!used[q.pos]) { //该位置之前还没标记过
used[q.pos] = 1;
myqueue.push(q);
}
}
q.pos = p.pos+1;
q.time = p.time+1;
if (!used[q.pos]) { //该位置之前还没标记过
used[q.pos] = 1;
myqueue.push(q);
}
q.pos = p.pos<<1;
q.time = p.time+1;
if (!used[q.pos]) { //该位置之前还没标记过
used[q.pos] = 1;
myqueue.push(q);
}
}
else {
q.pos = p.pos-1;
q.time = p.time+1;
if (!used[q.pos]) { //该位置之前还没标记过
used[q.pos] = 1;
myqueue.push(q);
}
}
}
}
int main(){
while (cin >> n >> k){
memset(used,0,sizeof(used));
cout << bfs() << endl;
}
return 0;
}