BFS - 水题

#include <iostream>
#include <queue>
#include <string.h>
using namespace std;
/****************************************************************************************************************
                题意:S为起点,D为终点,X为墙壁, '.'为空路,问是否可以从S走到D
                思路:
                1,广搜找路径
                注意:
                1,每次要从队首元素的邻接点开始遍历
                2,定义了三个队列,一个存元素,另外两个存坐标
                Input:              Output:
                    4 4                 No
                    S.X.
                    ..X.
                    ..XD
                    ..X.
****************************************************************************************************************/
char map[10][10];
int visit[10][10]={0};
int exist=0;

queue <char> Q1;
queue <int> Q2,Q3;
void bfs(int X,int Y)
{
    visit[X][Y]=1;
    Q1.push(map[X][Y]);
    Q2.push(X);
    Q3.push(Y);

    while(!Q1.empty())
    {
        char c=Q1.front();
        int x=Q2.front();
        int y=Q3.front();
        //cout<<"c= "<<c<<" x= "<<x<<" y= "<<y<<endl;
        Q1.pop();
        Q2.pop();
        Q3.pop();

        if(c == 'D')    {exist=1;}

        if(!visit[x-1][y] && map[x-1][y] != 'X')  {visit[x-1][y]=1; Q1.push(map[x-1][y]);Q2.push(x-1);Q3.push(y);}
        if(!visit[x+1][y] && map[x+1][y] != 'X')  {visit[x+1][y]=1; Q1.push(map[x+1][y]);Q2.push(x+1);Q3.push(y);}
        if(!visit[x][y-1] && map[x][y-1] != 'X')  {visit[x][y-1]=1; Q1.push(map[x][y-1]);Q2.push(x);Q3.push(y-1);}
        if(!visit[x][y+1] && map[x][y+1] != 'X')  {visit[x][y+1]=1; Q1.push(map[x][y+1]);Q2.push(x);Q3.push(y+1);}
    }
}
int main()
{
    int n,m,T;
    while(cin>>n>>m>>T)
    {
        memset(map,'X',sizeof(map));
        for(int i = 1;i <= n;i ++)
            for(int j = 1;j <= m;j ++)
                cin>>map[i][j];
        for(int i = 1;i <= n;i ++)
            for(int j = 1;j <= m;j ++)
                if(map[i][j] == 'S')
                    bfs(i,j);

        if(!exist)
            cout<<"No"<<endl;
        else
            cout<<"Yes"<<endl;
    }
    return 0;
}

转载于:https://www.cnblogs.com/Jstyle-continue/p/6352021.html

### 关于DFS和BFS算法的练习及相关解析 #### 一、DFS(深度优先索) DFS的核心思想是从某个起点开始,尽可能深地探索每一个分支,直到无法再深入为止。以下是几个经典的DFS目及其解析: 1. **岛屿数量** - **描述**: 给定一个由 '1' (陆地) 和 '0' () 组成的二维网格,计算岛屿的数量。岛屿总是被包围,并且是由相邻陆地连接而成的区域。 - **示例代码**: ```python def numIslands(grid): if not grid or not grid[0]: return 0 m, n = len(grid), len(grid[0]) visited = [[False]*n for _ in range(m)] def dfs(x, y): if x < 0 or x >= m or y < 0 or y >= n or grid[x][y] == "0" or visited[x][y]: return visited[x][y] = True directions = [(0,1),(1,0),(-1,0),(0,-1)] # 右 下 上 左 for dx, dy in directions: nx, ny = x + dx, y + dy dfs(nx, ny) count = 0 for i in range(m): for j in range(n): if grid[i][j] == "1" and not visited[i][j]: dfs(i, j) count += 1 return count ``` 这里通过递归的方式实现了DFS逻辑[^2]。 2. **迷宫问** - **描述**: 在给定的一个矩阵中,从起始点到达终点的所有路径数是多少? - **解析**: 使用DFS尝试每一条可能的路径,当遇到障碍物或超出边界时停止当前路径的扩展[^3]。 --- #### 二、BFS(广度优先索) BFS是一种逐层展开的索方式,适合解决最短路径类问。以下是几个典型的BFS目及其解析: 1. **克隆图** - **描述**: 给定无向连通图中一个节点的引用,返回其深拷贝(即克隆)。每个节点都含有一个 `val` (整数值)和一个列表 `neighbors` 表示它的邻居节点。 - **示例代码**: ```python from collections import deque class Node: def __init__(self, val=0, neighbors=None): self.val = val self.neighbors = neighbors if neighbors is not None else [] def cloneGraph(node): if not node: return None queue = deque([node]) clones = {node: Node(node.val)} while queue: current = queue.popleft() for neighbor in current.neighbors: if neighbor not in clones: clones[neighbor] = Node(neighbor.val) queue.append(neighbor) clones[current].neighbors.append(clones[neighbor]) return clones[node] ``` 2. **腐烂橘子** - **描述**: 在一个二维网格中,有新鲜橘子和腐烂橘子。每一分钟,任何与腐烂橘子相邻的新鲜橘子都会变质。求所有橘子全部腐烂所需的最少时间。 - **解析**: 利用队列记录每次需要处理的状态变化,逐步扩散感染范围直至没有新的可感染对象[^4]。 --- #### 三、综合应用实例 以下是一个结合了DFS/BFS的应用场景——图像染色问- **输入**: 图像数组 `image`, 起始坐标 `(sr, sc)` 和新颜色 `newColor`. - **目标**: 将与初始位置相同颜色的所有相连像素替换为指定的新颜色。 - **解决方案**: 如果旧颜色等于新颜色,则无需执行任何操作;否则可以通过DFS或BFS完成任务。具体实现见上述“岛屿数量”的变形版本。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值