大模型参数高效微调之实操指南

1.如果想要在某个模型基础上做全参数微调,究竟需要多少显存?

要确定进行全参数微调所需的显存量,需要考虑以下几个因素:

  1. 模型的大小:模型的大小是影响所需显存量的一个主要因素。较大的模型通常需要更多的显存来存储模型的参数和中间计算结果。例如,GPT-3 模型拥有数十亿个参数,相比之下,较小的模型如GPT-2可能只有几亿个参数。
  2. 批次大小(Batch Size):批次大小是指一次性输入到模型进行处理的样本数量。较大的批次大小通常需要更多的显存,因为模型需要同时存储和处理更多的输入数据。批次大小的选择通常是根据显存容量和性能需求进行平衡的。
  3. 输入序列长度:如果你的任务涉及到处理长序列文本,例如长篇文章或整个文档,那么输入序列的长度也会对显存需求产生影响。较长的序列需要更多的显存来存储序列的表示和中间计算结果。
  4. 计算平台和优化:不同的计算平台和深度学习框架可能在显存使用方面存在差异。一些框架可能会提供显存优化的功能,例如梯度检查点(Gradient Checkpointing)或混合精度训练(Mixed Precision Training),以减少显存的使用。

通常,大型模型和较大的批次大小可能需要较大的显存容量。建议在进行微调之前评估和测试所用计算平台的显存容量,并根据实际情况进行调整。

2.为什么SFT之后感觉LLM傻了?

在进行 Supervised Fine-Tuning(SFT)之

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值