分布式训练之张量并行

和流水线并行类似,张量并行也是将模型分解放置到不同的GPU上,以解决单块GPU无法储存整个模型的问题。和流水线并行不同的地方在于,张量并行是针对模型中的张量进行拆分,将其放置到不同的GPU上。

1.简述

模型并行是不同设备负责单个计算图不同部分的计算。而将计算图中的层内的参数(张量)切分到不同设备(即层内并行),每个设备只拥有模型的一部分,以减少内存负荷,我们称之为张量模型并行。

在这里插入图片描述

张量并行从数学原理上来看就是对于linear层就是把矩阵分块进行计算,然后把结果合并;对于非linear层,则不做额外设计。

2.张量并行方式

张量切分方式分为按行进行切分和按列进行切分,分别对应行并行(Row Parallelism)与列并行(Column Parallelism)。

在这里插入图片描述
下面用通用矩阵的矩阵乘法(GEMM)来进行示例,看看线性层如何进行模型并行。假设 Y = XA ,对于模型来说,X 是输入,A是权重,Y是输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

comli_cn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值