题目:求最小高度树
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n
nodes which are labeled from 0
to n - 1
. You will be given the number n
and a list of undirected edges
(each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
Example 1:
Given n = 4
, edges = [[1, 0], [1, 2], [1, 3]]
0 | 1 / \ 2 3
return [1]
解法:假如以图中某个点为根得到一个树,那么图中度为1的点就是根树的叶子节点。所以可以依次去掉度为1的节点,最后剩下的一个或者两个点就是最小高度树的根。注意最后一定会剩下一个或者两个点,因为度数不超过1的简单连通图只可能有一个顶点或者两个顶点。
我用了类似拓扑排序的算法来不断去掉叶子节点的。类比拓扑排序中对入度为0的点的操作,可以设一个队列,先把度数为1的节点放入队列中。然后每次队首出队,把它的邻居节点的度数减1,如果度数减完后等于1,就把邻居节点放入队列中。
复杂度:O(|V| |E|)
代码:
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
vector<vector<int> > adj(n);
vector<int> degree(n),res;
if(n==1)
{
res.push_back(0);
return res;
}
queue<int> que;
int count=0;
int now=0,next=0;//这一层和下一层结点数
for(int i=0;i<edges.size();i++)
{
adj[edges[i].first].push_back(edges[i].second);
adj[edges[i].second].push_back(edges[i].first);
degree[edges[i].first]++;
degree[edges[i].second]++;
}
for(int i=0;i<n;i++)
{
if(degree[i]==1)
{
que.push(i);
now++;
}
}
while(!que.empty()&&count<n-2)
{
int cur=que.front();que.pop();
count++;
for(int i=0;i<adj[cur].size();i++)
{
degree[adj[cur][i]]--;
if(degree[adj[cur][i]]==1)
{
que.push(adj[cur][i]);
next++;
}
}
now--;
if(now==0)//一层结束
{
now=next;next=0;
}
}
if(next==0)//剩下的两个点都是
{
res.push_back(que.front());
}
que.pop();
res.push_back(que.front());
return res;
}
};