bookshelf HDU - 6363(数论结论+莫比乌斯反演)

本文探讨了一道关于书架放置书籍的数学问题,通过数论简化和组合数学的方法求解书籍放置方案下书架整体美丽的期望值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bookshelf HDU - 6363

Patrick Star bought a bookshelf, he named it ZYG !!

Patrick Star has N book .

The ZYG has K layers (count from 1 to K) and there is no limit on the capacity of each layer !

Now Patrick want to put all N books on ZYG :

  1. Assume that the i-th layer has cnti(0≤cnti≤N) books finally.

  2. Assume that f[i] is the i-th fibonacci number (f[0]=0,f[1]=1,f[2]=1,f[i]=f[i−2]+f[i−1]).

  3. Define the stable value of i-th layers stablei=f[cnti].

  4. Define the beauty value of i-th layers beautyi=2stablei−1.

  5. Define the whole beauty value of ZYG score=gcd(beauty1,beauty2,…,beautyk)(Note: gcd(0,x)=x).

Patrick Star wants to know the expected value of score
if Patrick choose a distribute method randomly !
Input
The first line contain a integer T (no morn than 10), the following is T test case, for each test case :

Each line contains contains three integer n,k(0<n,k106)(0<n,k≤106)
.
Output
For each test case, output the answer as a value of a rational number modulo 109+7.

Formally, it is guaranteed that under given constraints the probability is always a rational number pq (p and q are integer and coprime, q is positive), such that q is not divisible by 109+7. Output such integer a between 0 and 109+6 that p−aq is divisible by 109+7
.
Sample Input

1
6 8

Sample Output

797202805
题意:

把N本书放到K层的书架上,每一层的美丽值为bi=2f[cnt]1bi=2f[cnt]−1,其中cnt是这一层书的数量,f[x]为斐波那契数列,整个书架的美丽值为gcd(b1,b2,...,bk)gcd(b1,b2,...,bk),问整个书架的美丽值的期望

分析:

首先需要利用数论中的两个结论进行化简

gcd(xa1,xb1)=xgcd(a,b)1gcd(xa−1,xb−1)=xgcd(a,b)−1

gcd(f[x],f[y])=f[gcd(x,y)]gcd(f[x],f[y])=f[gcd(x,y)](f[]f[]是斐波那契数列)

于是可以进一步化简公式为2f[gcd(cnt1,cnt2,...,cntk)]12f[gcd(cnt1,cnt2,...,cntk)]−1

这样只需要枚举gcd,计算gcd出现次数就可以知道gcd的贡献值了

f(g)gcd(x1,x2,...xk)=gf(g)表示gcd(x1,x2,...xk)=g的个数

F(p)gcd(x1,x2,...xk)=gpF(p)表示gcd(x1,x2,...xk)=g的倍数p的个数

我们发现对于f(g)f(g)来说不是很好求,但是F(p)F(p)好求

如果想知道n内有多少个g的倍数的话那么应该共有npnp个

那么将这些数分成k份的话,利用隔板法

|||...||||∗|∗|...|∗∗|∗∗|

k+1k+1个板子可以得到k个盒子,中间盒子中任意放npnp个

那么相当于中间np+k1np+k−1个位置的组合,其中选取k-1个位置,那么其他位置便确定了

因此F(p)=Ck1np+k1F(p)=Cnp+k−1k−1

而gcd的贡献值应该为f(gcd)×(2f[gcd]1)f(gcd)×(2f[gcd]−1)

这样我们知道了F()F()就可以通过莫比乌斯反演计算f()f()

因此可以先在ngcdn|gcdgcdgcdp(p|n)n的范围内枚举gcd(n|gcd),然后在从gcd为基础枚举gcd的倍数p(p|n)

f(gcd)=gcd|pμ(pgcd)F(p)=gcd|pμ(pgcd)Ck1np+k1f(gcd)=∑gcd|pμ(pgcd)F(p)=∑gcd|pμ(pgcd)Cnp+k−1k−1

这样求出f()f()后可以乘上值(2f[gcd]1)(2f[gcd]−1)

所以答案为

ans=gcd|n2f[gcd]1gcd|pμ(pgcd)Ck1np+k1ans=∑gcd|n2f[gcd]−1∑gcd|pμ(pgcd)Cnp+k−1k−1

因为要求期望,所以再除去总的可能数

ans=ansCk1n+k1ans=ansCn+k−1k−1

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 1e6 + 5;
const LL mod = 1e9 + 7;
const LL mm = 1e9 + 6;

LL inv[maxn * 2 + 5],fac[maxn * 2 + 5];
bool check[maxn];
LL prime[maxn],mu[maxn],f[maxn],n,k;

LL exgcd(LL a,LL b,LL& x,LL& y){
    if(a == 0 && b == 0) return -1;
    if(b == 0){
        x = 1,y = 0;
        return a;
    }
    LL d = exgcd(b,a % b,y,x);
    y -= a / b * x;
    return d;
}
LL rev(LL a,LL n){
    LL x,y;
    LL d = exgcd(a,n,x,y);
    return (x % n + n) % n;
}
void init_inv(){
    fac[0] = 1;
    for(LL i = 1;i < 2 * maxn;++i) fac[i] = fac[i - 1] * i % mod;
    inv[2 * maxn - 1] = rev(fac[2 * maxn - 1],mod);
    for(LL i = 2 * maxn - 2;i >= 0;--i){
        inv[i] = (i + 1) * inv[i + 1] % mod;
    }
}
LL C(LL a,LL b){
    LL m = a,n = b;
    return ((fac[n] * inv[m]) % mod * inv[n - m]) % mod;
}
void init(){
    f[0] = 0,f[1] = 1;
    for(int i = 2;i < maxn;++i){
        f[i] = (f[i - 1] + f[i - 2]) % mm;
    }
}
void mobius(){
    memset(check,false,sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for(LL i = 2;i < maxn;++i){
        if(!check[i]){
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0;j < tot;++j){
            if(i * prime[j] > maxn) break;
            check[i * prime[j]] = true;
            if(i % prime[j] == 0){
                mu[i * prime[j]] = 0;
                break;
            }
            else mu[i * prime[j]] = -mu[i];
        }
    }
}
LL qmod(LL a,LL n){
    LL ret = 1;
    while(n){
        if(n & 1) ret = ret * a % mod;
        a = a * a % mod;
        n = n>>1;
    }
    return ret;
}

int main(){
    init_inv();
    mobius();
    init();
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%lld%lld",&n,&k);
        LL denominator = C(k-1,n + k - 1);
        denominator = rev(denominator,mod);
        LL ans = 0;
        for(int i = 1;i <= n;++i){
            if(n % i) continue;
            LL div = i;
            LL contri = (qmod(2,f[div]) - 1 + mod) % mod;
            LL cnt = 0;
            for(LL j = div;j <= n;j += div){
                if(n % j) continue;
                LL d = j;
                cnt += mu[d / i] * C(k-1,n / d + k - 1) % mod;
                cnt = (cnt % mod + mod) % mod;
            }
            ans += contri * cnt % mod;
            ans %= mod;
        }
        ans = ans * denominator % mod;
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值