Fools and Foolproof Roads CodeForces - 362D(并查集+优先队列)

Fools and Foolproof Roads

CodeForces - 362D


You must have heard all about the Foolland on your Geography lessons. Specifically, you must know that federal structure of this country has been the same for many centuries. The country consists of n cities, some pairs of cities are connected by bidirectional roads, each road is described by its length li.

The fools lived in their land joyfully, but a recent revolution changed the king. Now the king is Vasily the Bear. Vasily divided the country cities into regions, so that any two cities of the same region have a path along the roads between them and any two cities of different regions don't have such path. Then Vasily decided to upgrade the road network and construct exactly p new roads in the country. Constructing a road goes like this:

  1. We choose a pair of distinct cities u, v that will be connected by a new road (at that, it is possible that there already is a road between these cities).
  2. We define the length of the new road: if cities u, v belong to distinct regions, then the length is calculated as min(109, S + 1) (S — the total length of all roads that exist in the linked regions), otherwise we assume that the length equals 1000.
  3. We build a road of the specified length between the chosen cities. If the new road connects two distinct regions, after construction of the road these regions are combined into one new region.

Vasily wants the road constructing process to result in the country that consists exactly of q regions. Your task is to come up with such road constructing plan for Vasily that it meets the requirement and minimizes the total length of the built roads.


Input

The first line contains four integers n (1 ≤ n ≤ 105), m (0 ≤ m ≤ 105), p (0 ≤ p ≤ 105), q (1 ≤ q ≤ n) — the number of cities in the Foolland, the number of existing roads, the number of roads that are planned to construct and the required number of regions.

Next m lines describe the roads that exist by the moment upgrading of the roads begun. Each of these lines contains three integers xi, yi, li: xi, yi — the numbers of the cities connected by this road (1 ≤ xi, yi ≤ n, xi ≠ yi), li — length of the road (1 ≤ li ≤ 109). Note that one pair of cities can be connected with multiple roads.

Output

If constructing the roads in the required way is impossible, print a single string "NO" (without the quotes). Otherwise, in the first line print word "YES" (without the quotes), and in the next p lines print the road construction plan. Each line of the plan must consist of two distinct integers, giving the numbers of the cities connected by a road. The road must occur in the plan in the order they need to be constructed. If there are multiple optimal solutions, you can print any of them.

Examples
Input
9 6 2 2
1 2 2
3 2 1
4 6 20
1 3 8
7 8 3
5 7 2
Output
YES
9 5
1 9
Input
2 0 1 2
Output
NO
Input
2 0 0 2
Output
YES
Note

Consider the first sample. Before the reform the Foolland consists of four regions. The first region includes cities 1, 2, 3, the second region has cities 4 and 6, the third region has cities 5, 7, 8, the fourth region has city 9. The total length of the roads in these cities is 11, 20, 5 and 0, correspondingly. According to the plan, we first build the road of length 6 between cities 5 and 9, then the road of length 23 between cities 1 and 9. Thus, the total length of the built roads equals 29.

题意:
给出一个无向图, 有n个点, m条边.
要求再添加p条边, 使得图中有q个连通块.
并使得所加边的权值和最小.
所加的边权值为min(1e9, S+1).
S是两个连通块的权值和(连通块的权值为所包含的边的权值和).

解题思路:
用并查集维护连通块, 用优先队列维护每个连通块的权值, 每次要减小连通块的数量(在两个连通块之间加边)的时候就从优先队列里面拿两个最小的连通块.

权值用long long啊!!!!

code:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
const int maxn = 5e5+5;
const ll INF = 1e9;
struct node{
    int id;
    ll sum;
    bool operator < (const node& other)const{
        return sum > other.sum;
    }
};
int pre[maxn],num[maxn];
ll sum[maxn];
int vis[maxn];
vector<pair<int,int> >res;
priority_queue<node>que;

void init(int n){
    for(int i = 1; i <= n; i++){
        pre[i] = i;
        sum[i] = 0ll;
        num[i] = 1;
        vis[i] = 0;
    }
}
int Find(int x){
    if(x == pre[x])
        return x;
    else return pre[x] = Find(pre[x]);
}
void Union(int x,int y,ll w){
    int fx = Find(x),fy = Find(y);
    if(fx != fy){
        pre[fy] = fx;
        sum[fx] += sum[fy];
        num[fx] += num[fy];
    }
    sum[fx] += w;
    return;
}
int main(){
    int n,m,p,q;
    scanf("%d%d%d%d",&n,&m,&p,&q);
    init(n);
    while(m--){
        int x,y;
        ll w;
        scanf("%d%d%lld",&x,&y,&w);
        Union(x,y,w);
    }
    int region = 0;
    for(int i = 1; i <= n; i++){
        if(Find(i) == i)
            region++;//算算几个连通分量
    }
    region -= q;
    if(region < 0){
        printf("NO\n");
        return 0;
    }
    for(int i = 1; i <= n; i++){
        int fx = Find(i);
        if(!vis[fx]){//父亲节点入队,相当于把连通分量入队
            node tmp;
            tmp.id = fx;
            tmp.sum = sum[fx];
            que.push(tmp);
            vis[fx] = 1;
        }
    }
    while(!que.empty() && region--){
        node tmp1 = que.top();
        que.pop();
        if(que.empty()) break;
        node tmp2 = que.top();
        que.pop();
        res.push_back(make_pair(tmp1.id,tmp2.id));//连接两个连通分量存在答案数组中
        //连接后更新
        sum[tmp1.id] += (sum[tmp2.id] + min(INF,sum[tmp1.id]+sum[tmp2.id]+1ll));
        num[tmp1.id] += num[tmp2.id];
        pre[tmp2.id] = tmp1.id;
        tmp1.sum = sum[tmp1.id];
        que.push(tmp1);//更改后重新入队
        p--;
    }
    if(p < 0){//边不够
        printf("NO\n");
        return 0;
    }
    if(p > 0){
        int flag = 0;
        for(int i = 1; i <= n; i++){
            int fx = Find(i);
            if(num[fx] > 1){
                flag = fx;//记录下该连通分量的父亲
                break;
            }
        }
        if(!flag){//每个连通分量只有一个点,那么只能出现自连边但是题目不允许
            printf("NO\n");
            return 0;
        }
        int id = 0;
        for(int i = 1; i <= n; i++){
            if(Find(i) == flag && i != flag){
                id = i;
                break;//找到连通分量重除父亲外的另一个点
            }
        }
        while(p--){
            res.push_back(make_pair(flag,id));//一个连通分量中加边
        }
    }
    printf("YES\n");
    for(int i = 0; i < res.size(); i++){
        printf("%d %d\n",res[i].first,res[i].second);
    }
    return 0;
}

**项目概述:** 本资源提供了一套采用Vue.js与JavaScript技术栈构建的古籍文献文字检测与识别系统的完整源代码及相关项目文档。当前系统版本为`v4.0+`,基于`vue-cli`脚手架工具开发。 **环境配置与运行指引:** 1. **获取项目文件**后,进入项目主目录。 2. 执行依赖安装命令: ```bash npm install ``` 若网络环境导致安装缓慢,可通过指定镜像源加速: ```bash npm install --registry=https://registry.npm.taobao.org ``` 3. 启动本地开发服务器: ```bash npm run dev ``` 启动后,可在浏览器中查看运行效果。 **构建与部署:** - 生成测试环境产物: ```bash npm run build:stage ``` - 生成生产环境优化版本: ```bash npm run build:prod ``` **辅助操作命令:** - 预览构建后效果: ```bash npm run preview ``` - 结合资源分析报告预览: ```bash npm run preview -- --report ``` - 代码质量检查与自动修复: ```bash npm run lint npm run lint -- --fix ``` **适用说明:** 本系统代码经过完整功能验证,运行稳定可靠。适用于计算机科学、人工智能、电子信息工程等相关专业的高校师生、研究人员及开发人员,可用于学术研究、课程实践、毕业设计或项目原型开发。使用者可在现有基础上进行功能扩展或定制修改,以满足特定应用场景需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【EI复现】基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度(Matlab代码实现)内容概要:本文介绍了基于阶梯碳交易机制的虚拟电厂优化调度模型,重点研究了包含P2G-CCS(电转气-碳捕集与封存)耦合技术和燃气掺氢技术的综合能源系统在Matlab平台上的仿真与代码实现。该模型充分考虑碳排放约束与阶梯式碳交易成本,通过优化虚拟电厂内部多种能源设备的协同运行,提升能源利用效率并降低碳排放。文中详细阐述了系统架构、数学建模、目标函数构建(涵盖经济性与环保性)、约束条件处理及求解方法,并依托YALMIP工具包调用求解器进行实例验证,实现了科研级复现。此外,文档附带网盘资源链接,提供完整代码与相关资料支持进一步学习与拓展。; 适合人群:具备一定电力系统、优化理论及Matlab编程基础的研究生、科研人员或从事综合能源系统、低碳调度方向的工程技术人员;熟悉YALMIP和常用优化算法者更佳。; 使用场景及目标:①学习和复现EI级别关于虚拟电厂低碳优化调度的学术论文;②掌握P2G-CCS、燃气掺氢等新型低碳技术在电力系统中的建模与应用;③理解阶梯碳交易机制对调度决策的影响;④实践基于Matlab/YALMIP的混合整数线性规划或非线性规划问题建模与求解流程。; 阅读建议:建议结合提供的网盘资源,先通读文档理解整体思路,再逐步调试代码,重点关注模型构建与代码实现之间的映射关系;可尝试修改参数、结构或引入新的约束条件以深化理解并拓展应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值