1076. Forwards on Weibo (30)

本文介绍了一道关于模拟微博转发过程的算法题目。通过图的限制深度广度优先搜索(BFS)来计算特定用户微博的最大潜在转发数量,考虑到间接关注者的层级限制。

1076. Forwards on Weibo (30)

时间限制
3000 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Weibo is known as the Chinese version of Twitter. One user on Weibo may have many followers, and may follow many other users as well. Hence a social network is formed with followers relations. When a user makes a post on Weibo, all his/her followers can view and forward his/her post, which can then be forwarded again by their followers. Now given a social network, you are supposed to calculate the maximum potential amount of forwards for any specific user, assuming that only L levels of indirect followers are counted.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers: N (<=1000), the number of users; and L (<=6), the number of levels of indirect followers that are counted. Hence it is assumed that all the users are numbered from 1 to N. Then N lines follow, each in the format:

M[i] user_list[i]

where M[i] (<=100) is the total number of people that user[i] follows; and user_list[i] is a list of the M[i] users that are followed by user[i]. It is guaranteed that no one can follow oneself. All the numbers are separated by a space.

Then finally a positive K is given, followed by K UserID's for query.

Output Specification:

For each UserID, you are supposed to print in one line the maximum potential amount of forwards this user can triger, assuming that everyone who can view the initial post will forward it once, and that only L levels of indirect followers are counted.

Sample Input:
7 3
3 2 3 4
0
2 5 6
2 3 1
2 3 4
1 4
1 5
2 2 6
Sample Output:
4
5

这题并不难,图的限制深度的BFS。重要的是邻接表的表示方法,本题

使用 vector a[1005] 来表示图,十分方便。

因为给的信息是用户i  follow了谁,而我们要看某个用户的微博可以被谁看,所以用邻接表存的时候反顾来存,并且是单向的

code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
vector<int> G[1005];
int vis[1005];
int n,level;
int bfs(int a){
    memset(vis,0,sizeof(vis));
    int first = 0,last = 1,newlevel = 0,cnt = 1;
    //这几个变量特别解释一下,first和last是判断这一层是否输出完,因为第一个传进来的是用户本身不能算,所以newlevel从0开始,first从0开始,
    //last和cnt从1开始是为了过滤去开始的点即用户本身,便于循环,最后只需要减去1即可
    queue<int> q;
    q.push(a);
    vis[a] = 1;
    while(!q.empty()){
        int s = q.front();
        q.pop();
        first++;//每次取出一个++,包含了用户本身
        for(int i = 0; i < G[s].size(); i++){
            if(!vis[G[s][i]]){
                vis[G[s][i]] = 1;
                cnt++;//计算总数,同时得到了加上这一层后的总数
                q.push(G[s][i]);
            }
        }
        if(first == last){
            last = cnt;
            newlevel++;
        }
        if(newlevel == level){
            return cnt-1;
        }
    }
    return cnt-1;
}
int main(){
    cin >> n >> level;
    for(int i = 1; i <= n; i++){
        int m;
        cin >> m;
        while(m--){
            int t;
            cin >> t;
            G[t].push_back(i);
        }
    }
    int k;
    cin >> k;
    while(k--){
        int user;
        cin >> user;
        cout << bfs(user) << endl;
    }
    return 0;
}



内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值