HDU - 1394 Minimum Inversion Number

The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

Input

The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.

Output

For each case, output the minimum inversion number on a single line.

Sample Input

10
1 3 6 9 0 8 5 7 4 2

Sample Output

16

 

給你一串数字(0~n-1,顺序被打乱),你可以将前a(0<=a<=n)个数字移到后面,这a个数字顺序不可被打乱,剩下的n-a个数字顺序不可被打乱,输出所有情况中含逆序对最少的那个串的逆序对数。

 

关于逆序对问题:要用 树状数组 或 线段树求解.

以下用的是树状数组。

 

为什么要用树状数组?因为树状数组快啊

方法都是暴力,不用树状数组,需要用两重循环。对每个数,求小于它的数在它前面出现了几个,O(n^2)的复杂度 

树状数组将复杂度降到O(nlogn) , 树状数组优点:求和快

 

好,求出原串的逆序对,但还不满足要求,因为可以重构串,(类似环排列,重新选起点)

 

暴力?重构串,求逆序对,O(n^2)

其他情况是怎么来的,是原串将最前面那个数移到最后得到的,之后将所得到串的最前面那个数移到最后,一直重复n-1,第n次就变成了开始那个串。

若能求出最前面那个数在这串有多少个小于它的数就好了,开始那个串的逆序对数已知,该逆序对数记为为A,最前面那个数在这串有多少个小于它的数为x,将最前面那个数移到最后,逆序对数为,A-x+(n-x-1)

 

想一下原串中的数字,若3在某次串在最前面,是不是我们已经知道在它后面有多少个数小于它,有多少个数大于它。(数只可能是0~n-1,并且不会重复)

所以用现在的串的最前面那个数。(开始时想在C数组中找线索,唉,思维题)

 

#include <cstdio>
#include <algorithm>
#define Lowbit(x) (x&-x)
#define Lim 5000 + 10
#define INF 0x3f3f3f3f
using namespace std;

void Update(int *C,int p,int v)
{
    for(int i=p; i<=Lim; i+=Lowbit(i))
        C[i]+=v;
}

int Sum(int *C,int p)
{
    int ans=0;
    for(int i=p; i>0; i-=Lowbit(i))
        ans+=C[i];
    return ans;
}

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        int i,t=0,ans;
        int C[Lim]= {0};
        int Rop[Lim]= {0};
        int sam[Lim]= {0};
        for(i=1; i<=n; i++)
        {
            scanf("%d",&sam[i]);
            sam[i]++;
            Update(C,sam[i],1);
            Rop[sam[i]]=i-Sum(C,sam[i]);
            t+=Rop[sam[i]];
        }
        ans=t;
        for(i=1; i<n; i++)
        {
            t+=n-sam[i]-(sam[i]-1);
            ans=min(t,ans);
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

内容概要:本文详细介绍了如何使用STM32微控制器精确控制步进电机,涵盖了从原理到代码实现的全过程。首先,解释了步进电机的工作原理,包括定子、转子的构造及其通过脉冲信号控制转动的方式。接着,介绍了STM32的基本原理及其通过GPIO端口输出控制信号,配合驱动器芯片放大信号以驱动电机运转的方法。文中还详细描述了硬件搭建步骤,包括所需硬件的选择与连接方法。随后提供了基础控制代码示例,演示了如何通过定义控制引脚、编写延时函数和控制电机转动函数来实现步进电机的基本控制。最后,探讨了进阶优化技术,如定时器中断控制、S形或梯形加减速曲线、微步控制及DMA传输等,以提升电机运行的平稳性和精度。 适合人群:具有嵌入式系统基础知识,特别是对STM32和步进电机有一定了解的研发人员和技术爱好者。 使用场景及目标:①学习步进电机与STM32的工作原理及二者结合的具体实现方法;②掌握硬件连接技巧,确保各组件间正确通信;③理解并实践基础控制代码,实现步进电机的基本控制;④通过进阶优化技术的应用,提高电机控制性能,实现更精细和平稳的运动控制。 阅读建议:本文不仅提供了详细的理论讲解,还附带了完整的代码示例,建议读者在学习过程中动手实践,结合实际硬件进行调试,以便更好地理解和掌握步进电机的控制原理和技术细节。同时,对于进阶优化部分,可根据自身需求选择性学习,逐步提升对复杂控制系统的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值