Examples:
Logistic Regression (in Python):
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/hdf5_classification.ipynb
Learn LeNet on MNIST:
http://caffe.berkeleyvision.org/gathered/examples/mnist.html
Fine-tuning CaffeNet for Style Recognition on “Flickr Style” Data
Caffe Demo :
http://demo.caffe.berkeleyvision.org/
Feature Visualization :
http://nbviewer.ipython.org/github/BVLC/caffe/blob/dev/examples/filter_visualization.ipynb
How to transform models in Caffe:
Related projects:
R-CNN: Regions with CNN
Ross Girshick et al.Rich feature hierarchies for accurate object detection and semanticsegmentation. CVPR14.
Full scripts:
Visual Style Recognition:
Karayev et al.Recognizing Image Style. BMVC14. Caffe fine-tuning example
Latest Roast:
Model Zoo:
https://github.com/BVLC/caffe/wiki/Model-Zoo
- BVLC reference models
- VGG Devil + ILSVRC14 models
in the zoo
- Network-in-Network / CCCP model
in the zoo
Caffe + cuDNN
Parallel / distributed training across CPUs, GPUs, and cluster nodes
参考:DIY Deep Learning for Vision with Caffe slides
本文详细介绍了Caffe框架的使用方法,包括如何利用Caffe进行模型训练、迁移学习、特征可视化等深度学习任务,并提供了相关代码示例和链接。
791

被折叠的 条评论
为什么被折叠?



