数值计算方法 Chapter5. 解线性方程组的直接法

本文详细介绍了求解线性方程组的各种方法,包括消元法、直接分解法等,并提供了Python伪代码实现。

0. 问题描述

这一章节考察的就是如何求解线性方程组:

{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n &= b_2 \\ ... \\ a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n &= b_n \end{aligned} \right. a11x1+a12x2+...+a1nxna21x1+a22x2+...+a2nxn...an1x1+an2x2+...+annxn=b1=b2=bn

或者可以用矩阵来表达:

( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . a n 1 a n 2 . . . a n n ) ( x 1 x 2 . . . x n ) = ( b 1 b 2 . . . b n ) \begin{pmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... \\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix} =\begin{pmatrix} b_1 \\ b_2 \\ ... \\ b_n \end{pmatrix} a11a21...an1a12a22an2.........a1na2nannx1x2...xn=b1b2...bn

1. 消元法

1. 三角方程组

首先,我们来考察一些特殊形式的方程:

1. 对角方程组

对角方程组的函数形式如下:

( a 11 a 22 . . . a n n ) ( x 1 x 2 . . . x n ) = ( b 1 b 2 . . . b n ) \begin{pmatrix} a_{11} & & & \\ & a_{22} & & \\ & & ... & \\ & & & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix} =\begin{pmatrix} b_1 \\ b_2 \\ ... \\ b_n \end{pmatrix} a11a22...annx1x2...xn=b1b2...bn

显然,可以直接写出 x i = b i / a i i x_i = b_i / a_{ii} xi=bi/aii,其中, i ∈ [ 1 , n ] i \in [1, n] i[1,n]

2. 下三角方程组

下面,我们考察一下一个稍微复杂一点的情况,即下三角矩阵的情况:

( a 11 a 21 a 22 . . . a n 1 a n 2 . . . a n n ) ( x 1 x 2 . . . x n ) = ( b 1 b 2 . . . b n ) \begin{pmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ & & ... & \\ a_{n1} & a_{n2} & ... & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ ... \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ ... \\ b_n \end{pmatrix} a11a21an1a22an2......annx1x2...xn

内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合Koopman算子理论与递归神经网络(RNN)的数据驱动建模方法,旨在对非线性纳米定位系统进行有效线性化建模,并实现高精度的模型预测控制(MPC)。该方法利用Koopman算子将非线性系统映射到高维线性空间,通过递归神经网络学习系统的动态演化规律,构建可释性强、计算效率高的线性化模型,进而提升预测控制在复杂不确定性环境下的鲁棒性与跟踪精度。文中给出了完整的Matlab代码实现,涵盖数据预处理、网络训练、模型验证与MPC控制器设计等环节,具有较强的基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)可复现性和工程应用价值。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及自动化、精密仪器、机器人等方向的工程技术人员。; 使用场景及目标:①决高精度纳米定位系统中非线性动态响应带来的控制难题;②实现复杂机电系统的数据驱动建模与预测控制一体化设计;③为非线性系统控制提供一种可替代传统机理建模的有效工具。; 阅读建议:建议结合提供的Matlab代码逐模块分析实现流程,重点关注Koopman观测矩阵构造、RNN网络结构设计与MPC控制器耦合机制,同时可通过替换实际系统数据进行迁移验证,深化对数据驱动控制方法的理与应用能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值