【POJ】Find them, Catch them

本文介绍了一种使用并查集算法解决犯罪团伙归属问题的方法,通过巧妙地处理不同团伙成员之间的关系,实现了对两个犯罪集团——龙帮和蛇帮成员身份的有效判断。文章详细解释了算法原理,并提供了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 62168 Accepted: 18835

Description

The police office in Tadu City decides to say ends to the chaos, as launch actions to root up the TWO gangs in the city, Gang Dragon and Gang Snake. However, the police first needs to identify which gang a criminal belongs to. The present question is, given two criminals; do they belong to a same clan? You must give your judgment based on incomplete information. (Since the gangsters are always acting secretly.)

Assume N (N <= 10^5) criminals are currently in Tadu City, numbered from 1 to N. And of course, at least one of them belongs to Gang Dragon, and the same for Gang Snake. You will be given M (M <= 10^5) messages in sequence, which are in the following two kinds:

1. D [a] [b]
where [a] and [b] are the numbers of two criminals, and they belong to different gangs.

2. A [a] [b]
where [a] and [b] are the numbers of two criminals. This requires you to decide whether a and b belong to a same gang.

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case begins with a line with two integers N and M, followed by M lines each containing one message as described above.

Output

For each message "A [a] [b]" in each case, your program should give the judgment based on the information got before. The answers might be one of "In the same gang.", "In different gangs." and "Not sure yet."

Sample Input

1
5 5
A 1 2
D 1 2
A 1 2
D 2 4
A 1 4

Sample Output

Not sure yet.
In different gangs.
In the same gang.

Source

POJ Monthly--2004.07.18

【思路】

  使用并查集。但是并查集内相同父节点认为是一个集合内,这道题的题意是给我们一对数,这对数不在一个集合内。

  例子:

  A B

  B C

  A 和 B 不在一个集合内, B 和 C 不在一个集合内, 可以推导出A和C在一个集合内。如果我们直接使用并查集的话。A,B,C

  回使A,B,C 在相同的集合内。这样就找不到A,B,C的关系了。

  解决办法是:

  A 和 B + n 在一个集合内

  B 和 A + n 在一个集合内

  C 和 B + n 在一个集合内

  B 和 C + n 在一个集合内

  这样 查询 A 和 B 是否在一个集合的时候,我们使用 find(A, B+n) 和 find(A + n, B) 

  在判断 A 和 C 是否一个集合的时候, 我们通过 A 和 B + n 和 C 和 B + n 推导出 A 和 C 在一个团伙里。

【代码】

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 2e5 + 10;
int s[N];
int t, n, m;
char c;
void init() {
    memset(s, 0, sizeof(s));
    for(int i = 1; i <= n * 2; i++) {
        s[i] = i;
    }
}
int find(int x) {
    if(s[x] != x) s[x] = find(s[x]);

    return s[x];
}
void union_set(int x, int y) {
    x = find(x);
    y = find(y);
    if(x != y ) s[x] = s[y];
}

bool same(int x, int y ) {
    return find(x) == find(y);
}
int main() {
    cin >> t;
    while(t--) {
        scanf("%d%d", &n, &m);
        init();

        getchar();
        for(int i = 0; i < m; i++) {
            int x, y;
            scanf("%c %d %d", &c, &x, &y);
            getchar();
            if(c == 'A') {
                if(n == 2) {
                    printf("In different gangs.\n");
                } else if( same(x, y) ) {
                    printf("In the same gang.\n");
                } else if( same(x, y + n) || same(y, x + n)) {
                    printf("In different gangs.\n");
                } else {
                    puts("Not sure yet.");
                }
            } else {
                union_set(x, y + n);
                union_set(y, x + n);
            }
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值