Leetcode-Stack-Easy(20, 155, 225, 232)

本文介绍如何使用栈进行括号匹配验证,并提供两种不同的实现方式。此外,还展示了如何利用队列和栈的基本操作实现栈和队列的功能,包括关键方法如push、pop、top等。
  1. Valid Parentheses
    Given a string s containing just the characters ‘(’, ‘)’, ‘{’, ‘}’, ‘[’ and ‘]’, determine if the input string is valid.
    对string遍历,左括号压栈,右括号检测栈不为空,且pop出来的是配对的符号,否则无效return false
//1 ms,37.2 MB
class Solution1 {
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        
        for(int i=0;i<s.length();i++){
            char c = s.charAt(i);
            switch(c) {
                case ')':
                  if(stack.isEmpty() || stack.pop()!='('){return false;}
                  break;
                case '}':
                    if(stack.isEmpty() || stack.pop()!='{'){return false;}
                    break;
                case ']':
                    if(stack.isEmpty() || stack.pop()!='['){return false;}
                    break;
                default:
                  stack.push(c);
            }
        }
        return stack.isEmpty();
    }
}

用HashMap记录的方法如下

//1 ms,37.2 MB
class Solution2 {
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<>();
        Map<Character,Character> map = new HashMap<>();
        map.put('(',')');
        map.put('{','}');
        map.put('[',']');
        
        for(int i=0;i<s.length();i++){
            char c = s.charAt(i);
            if(map.containsKey(c)){
                stack.push(c);
            }else{
                if(!stack.isEmpty()){
                   if(c!=map.get(stack.pop())){
                       return false;
                   }
                }else{
                    return false;
                }
            }
        }
        return stack.isEmpty();
    }
}
  1. Min Stack
/**
 * ArrayList用来遍历更新最小值,因此pop()时间复杂度是O(n),其余操作为O(1)
 */
class MinStack {
    private Stack<Integer> stackData;
    private ArrayList<Integer> listData;
    private int min;

    /** initialize your data structure here. */
    public MinStack() {
        stackData = new Stack<Integer>();
        listData = new ArrayList<Integer>();
        min = Integer.MAX_VALUE;
    }
    
    public void push(int x) {
        stackData.push(x);
        listData.add(x);
        if(x<min){
            min = x;
        }
    }
    
    public void pop() {
        int item=stackData.pop();
        if(listData.size()>0){
            listData.remove(listData.size()-1);
            min = Integer.MAX_VALUE;
            for(int i=0;i<listData.size();i++){
                if(min>listData.get(i)){
                    min=listData.get(i);
                }
            }
        }
    }
    
    public int top() {
       return stackData.peek(); 
    }
    
    public int getMin() {
        return min;
    }
}
/**
 * 神奇的算法:用min作为最小栈来记录,如果新入元素比顶端元素小就进,否则进顶端元素
 * num和min元素数量保持一致
 */
class MinStack {
    Stack<Integer> num;
    Stack<Integer> min;

    /** initialize your data structure here. */
    public MinStack() {
        num = new Stack<Integer>();
        min = new Stack<Integer>();
    }
    
    public void push(int x) {
        num.push(x);
        if(min.empty() || x<min.peek()){
            min.push(x);
        }else{
            min.push(min.peek());
        }
    }
    
    public void pop() {
        num.pop();
        min.pop();
    }
    
    public int top() {
        return num.peek();
    }
    
    public int getMin() {
        return min.peek();
    }
}

  1. Implement Stack using Queues
    void push(int x) Pushes element x to the top of the stack.
    int pop() Removes the element on the top of the stack and returns it.
    int top() Returns the element on the top of the stack.
    boolean empty() Returns true if the stack is empty, false otherwise.
    Notes:
    You must use only standard operations of a queue, which means only push to back, peek/pop from front, size, and is empty operations are valid.
    Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque (double-ended queue), as long as you use only a queue’s standard operations.
/**
 * 直白的思路:q记录所有元素,temp打辅助
 * 0 ms	36.8 MB 
 */
class MyStack {
    Queue<Integer> q;
    Queue<Integer> temp;

    /** Initialize your data structure here. */
    public MyStack() {
        q = new LinkedList<>();
        temp = new LinkedList<>();
    }
    
    /** Push element x onto stack. */
    public void push(int x) {
        q.offer(x);
    }
    
    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
        while(q.size()>1){
            temp.offer(q.poll());
        }
        int rtn = q.poll();
        q=temp;
        temp=new LinkedList<Integer>();
        return rtn;
    }
    
    /** Get the top element. */
    public int top() {
         while(q.size()>1){
            temp.offer(q.poll());
        }
        int rtn = q.poll();
        q=temp;
        q.offer(rtn);
        temp=new LinkedList<Integer>();
        return rtn;
    }
    
    /** Returns whether the stack is empty. */
    public boolean empty() {
        return q.isEmpty();
    }
}
/**
 * 神奇的思路:q记录所有元素,push方法中保证新入元素在队列首
 * 0 ms	36.9 MB 
 */
class MyStack {
    Queue<Integer> q = new LinkedList<>();;

    /** Push element x onto stack. */
    public void push(int x) {
        q.offer(x);
        for(int i=0;i<q.size()-1;i++){
            q.offer(q.poll());
        }
    }
    
    /** Removes the element on top of the stack and returns that element. */
    public int pop() {
       return q.poll();
    }
    
    /** Get the top element. */
    public int top() {
       return q.peek();
    }
    
    /** Returns whether the stack is empty. */
    public boolean empty() {
        return q.isEmpty();
    }
}
  1. Implement Queue using Stacks
    void push(int x) Pushes element x to the back of the queue.
    int pop() Removes the element from the front of the queue and returns it.
    int peek() Returns the element at the front of the queue.
    boolean empty() Returns true if the queue is empty, false otherwise.
    Notes:
    You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
    Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack’s standard operations.
/**
 * 直白的思路:stack记录所有元素,temp打辅助
 * 0 ms	37.2 MB
 */
class MyQueue {
    Stack<Integer> stack = new Stack<>();
    Stack<Integer> temp = new Stack<>();
    
    /** Initialize your data structure here. */
    public MyQueue() {        
    }
    
    /** Push element x to the back of queue. */
    public void push(int x) {
        stack.push(x);
    }
    
    /** Removes the element from in front of queue and returns that element. */
    public int pop() {
        while(!stack.isEmpty()){
            temp.push(stack.pop());
        }
        int rtn = temp.pop();
        while(!temp.isEmpty()){
            stack.push(temp.pop());
        }
        return rtn;
    }
    
    /** Get the front element. */
    public int peek() {
        while(!stack.isEmpty()){
            temp.push(stack.pop());
        }
        int rtn = temp.peek();
        while(!temp.isEmpty()){
            stack.push(temp.pop());
        }
        return rtn;
    }
    
    /** Returns whether the queue is empty. */
    public boolean empty() {
        return stack.isEmpty();
    }
}
/**
 * 神奇的思路:stack用来记录进来的元素,helper负责出去的元素,peek()保证了helper里有内容,代码简洁一些
 * 0 ms	36.6 MB
 */
class MyQueue {
    Stack<Integer> stack = new Stack<>();
    Stack<Integer> helper = new Stack<>();

    /** Initialize your data structure here. */
    public MyQueue() {
        
    }
    
    /** Push element x to the back of queue. */
    public void push(int x) {
        stack.push(x);
    }
    
    /** Removes the element from in front of queue and returns that element. */
    public int pop() {
        peek();
        return helper.pop();
    }
    
    /** Get the front element. */
    public int peek() {
        if(helper.isEmpty()){
            while(!stack.isEmpty()){
                helper.push(stack.pop());
            }
        }
        return helper.peek();
    }
    
    /** Returns whether the queue is empty. */
    public boolean empty() {
        return stack.isEmpty()&&helper.isEmpty();
    }
}
提供了一个基于51单片机的RFID门禁系统的完整资源文件,包括PCB图、原理图、论文以及源程序。该系统设计由单片机、RFID-RC522频射卡模块、LCD显示、灯控电路、蜂鸣器报警电路、存储模块和按键组成。系统支持通过密码和刷卡两种方式进行门禁控制,灯亮表示开门成功,蜂鸣器响表示开门失败。 资源内容 PCB图:包含系统的PCB设计图,方便用户进行硬件电路的制作和调试。 原理图:详细展示了系统的电路连接和模块布局,帮助用户理解系统的工作原理。 论文:提供了系统的详细设计思路、实现方法以及测试结果,适合学习和研究使用。 源程序:包含系统的全部源代码,用户可以根据需要进行修改和优化。 系统功能 刷卡开门:用户可以通过刷RFID卡进行门禁控制,系统会自动识别卡片并判断是否允许开门。 密码开门:用户可以通过输入预设密码进行门禁控制,系统会验证密码的正确性。 状态显示:系统通过LCD显示屏显示当前状态,如刷卡成功、密码错误等。 灯光提示:灯亮表示开门成功,灯灭表示开门失败或未操作。 蜂鸣器报警:当刷卡或密码输入错误时,蜂鸣器会发出报警声,提示用户操作失败。 适用人群 电子工程、自动化等相关专业的学生和研究人员。 对单片机和RFID技术感兴趣的爱好者。 需要开发类似门禁系统的工程师和开发者。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值