Leetcode - Tree - Easy(111-404)

  1. Minimum Depth of Binary Tree
    The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
/**
 * DFS思路,代码比较简洁,但如果是左侧500个单链孩子,右侧1个孩子这种比较极端的情况,时间复杂度会太高
 * /
class Solution1 {
    public int minDepth(TreeNode root) {
        if(root==null){return 0;}
        if(root.left==null && root.right==null){return 1;}
        if(root.left==null){return minDepth(root.right)+1;}
        if(root.right==null){return minDepth(root.left)+1;}
        return Math.min(minDepth(root.left),minDepth(root.right))+1;
    }
}
/**
 * BFS思路,faster than 100.00% 但是空间复杂度略高。
 * 结论:一般来说在找最短路径的时候使用 BFS,其他时候还是 DFS 使用得多一些(主要是递归代码好写)
 * /
class Solution2 {
    public int minDepth(TreeNode root) {
        if(root==null){return 0;}
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        int depth=1;
        
        while(!q.isEmpty()){
            int sz = q.size();
            
            for(int i=0;i<sz;i++){
                TreeNode current = q.poll();
                if(current.left==null && current.right==null){return depth;}
                if(current.left!=null){
                     q.add(current.left);
                 }
                if(current.right!=null){
                     q.add(current.right);
                 }   
            }      
            
            depth++;
        }
        return 0;
    }    
}
  1. Path Sum
    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum. Note: A leaf is a node with no children.
    Example:
    Given the below binary tree and sum = 22,
      5
     / \
    4   8
   /   / \
  11  13  4
 /  \      \
7    2      1

return true, as there exist a root-to-leaf path 5->4->11->2 which sum is 22.

/**
 * DFS思路, 除去root是否满足条件的判断之外,重点在于看左右孩子中有没有满足sum-root.val的路径
 * /
class Solution {
    public boolean hasPathSum(TreeNode root, int sum) {
        if(root==null){return false;}
        if(root.val==sum && root.left==null && root.right==null){return true;}
        if(hasPathSum(root.left,sum-root.val)){return true;}
        if(hasPathSum(root.right,sum-root.val)){return true;}
        return false;
    }
}

进阶版:
437. Binary Tree Paths
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go downwards (traveling only from parent nodes to child nodes).
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8

      10
     /  \
    5   -3
   / \    \
  3   2   11
 / \   \
3  -2   1

Return 3. The paths that sum to 8 are:

  1. 5 -> 3
  2. 5 -> 2 -> 1
  3. -3 -> 11
class Solution {
    public int pathSum(TreeNode root, int sum) {
        if(root==null){return 0;}
        return dfs(root,sum)+pathSum(root.left,sum)+pathSum(root.right,sum);
    }
    private int dfs(TreeNode root,int sum){
        int res=0;
        if(root==null){return res;}
        if(root.val==sum){res++;}
        res+=dfs(root.left,sum-root.val);
        res+=dfs(root.right,sum-root.val);
        return res;
    }
}

leetcode discussion: better solution using hash map
115. Invert Binary Tree
Example:
Input:

     4
   /   \
  2     7
 / \   / \
1   3 6   9

Output:

     4
   /   \
  7     2
 / \   / \
9   6 3   1
/**
 * DFS递归思路,faster than 100.00% of Java online submissions for Invert Binary Tree.
 */
class Solution1 {
    public TreeNode invertTree(TreeNode root) {
        if(root==null){return null;}
        TreeNode tmp = root.left;
        root.left=root.right;
        root.right=tmp;
        invertTree(root.left);
        invertTree(root.right);
        return root;
    }
}
/**
 * BFS思路,复杂度比solution1更好些
 */
class Solution2 {
    public TreeNode invertTree(TreeNode root) {
        if(root==null){return null;}
        Queue<TreeNode> q = new LinkedList<>();
        q.offer(root);
        
        while(!q.isEmpty()){
            int sz = q.size();
            for(int i=0;i<sz;i++){
                TreeNode current = q.poll();
                TreeNode tmp = current.left;
                current.left = current.right;
                current.right = tmp;
                if(current.left!=null){q.offer(current.left);}
                if(current.right!=null){q.offer(current.right);}
            }
        }
        return root;
    }
}
  1. Lowest Common Ancestor of a Binary Search Tree
    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
    According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Example 1:
在这里插入图片描述

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root==null){return null;}
        if(root==p || root==q){return root;}
        if(root.val>Math.max(p.val,q.val)){
           root = lowestCommonAncestor(root.left,p,q);
        }else if(root.val< Math.min(p.val,q.val)){
           root = lowestCommonAncestor(root.right,p,q);
        }
        return root;
    }
}
  1. Binary Tree Paths 【重点看】
    Example:

Input:

   1
 /   \
2     3
 \
  5

Output: [“1->2->5”, “1->3”]

Explanation: All root-to-leaf paths are: 1->2->5, 1->3

/**
 * 好理解的DFS版本,String is immutable所以每次都会建立新的
 * Runtime: 10 ms, Memory Usage: 40.5 MB
 */
class Solution1 {
    public List<String> binaryTreePaths(TreeNode root) {
        ArrayList<String> result = new ArrayList<>();
        binaryTreePathsHelper(root,"",result);
        return result;
    }
    private void binaryTreePathsHelper(TreeNode root, String solution, ArrayList<String> result){
        if(root==null){return;}
        if(root.left==null && root.right==null){result.add(solution+root.val);}
        binaryTreePathsHelper(root.left,solution+root.val+"->",result);
        binaryTreePathsHelper(root.right,solution+root.val+"->",result);
    }
}
/**
 *  改进版: We are passing object(address) of StringBuilder in recursion.
 *  StringBuilder is mutable- only one object(stringbuilder) would be created, so to avoid 
 *  retaining the previous list of values, we set the length to restrict them to go over to the next level.
 *  Runtime: 1 ms, Memory Usage: 39.5 MB
 */
class Solution2 {
    public List<String> binaryTreePaths(TreeNode root) {
        List<String> res = new ArrayList<>();
        StringBuilder sb= new StringBuilder();
        helper(res,root,sb);
        return res;
    }

    private void helper(List<String> res, TreeNode root, StringBuilder sb) {
        if(root == null) {
            return;
        }
        int len = sb.length();
        sb.append(root.val);
        if(root.left == null && root.right == null) {
            res.add(sb.toString());
        } else {
            sb.append("->");
            helper(res, root.left, sb);
            helper(res, root.right, sb);
        }
        sb.setLength(len);
    }
}
  1. Sum of Left Leaves
    Find the sum of all left leaves in a given binary tree.
    Example:
    3
   / \
  9  20
    /  \
   15   7

There are two left leaves in the binary tree, with values 9 and 15 respectively. Return 24.

class Solution {
    public int sumOfLeftLeaves(TreeNode root) {
        if(root==null){return 0;}
        int sum = 0;
        if(root.left!=null && root.left.left==null&& root.left.right==null){
            sum+=root.left.val;
        }
        sum+=sumOfLeftLeaves(root.left);
        sum+=sumOfLeftLeaves(root.right);
        return sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值