错误分析 (Machine Learning研习十九)

本文探讨了如何通过分析混淆矩阵识别模型错误类型,包括使用GridSearchCV调整超参数,以及通过数据增强和图像预处理减少模型在特定类别间的混淆,如3和5的区分。作者强调了理解模型弱点和利用这些知识改进模型的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

错误分析

您将探索数据准备选项,尝试多个模型,筛选出最佳模型,使用 Grid SearchCV微调其超参数,并尽可能实现自动化。在此,我们假设您已经找到了一个有前途的模型,并希望找到改进它的方法。其中一种方法就是分析它所犯的错误类型。

首先,查看混淆矩阵。为此,首先需要使用 cross_val_predict() 函数进行预测;然后可以像之前一样,将标签和预测值传递给 confusion_matrix()函数。不过,由于现在有 10 个类别而不是 2 个,混淆矩阵将包含大量数字,可能难以读取。

混淆矩阵的彩色图更容易分析。要绘制这样的图表,请使用ConfusionMatrixDisplay.from_predictions() 函数,如下所示:

from sklearn.metrics import ConfusionMatrixDisplay

y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3) ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred) plt.show() 

这就产生了 图1 中的左图。这个混淆矩阵看起来相当不错:大多数图像都在主对角线上,这意味着它们被正确分类了。请注意,对角线上第 5 行第 5 列的单元格看起来比其他数字略暗。这可能是因为模型对 5 的错误较多,也可能是因为数据集中 5 的数量比其他数字少。这就是为什么要对混淆矩阵进行归一化处理,将每个值除以相应(真实)类别中的图像总数(即除以行的总和)。只需设置 normalize="true "即可。我们还可以指定 val ues_format=".0%"参数来显示不带小数点的百分比。下面的代码将生成 图1 右侧的图表:

ConfusionMatrixDisplay.from_predictions(y_train, y_train_pred,                                        normalize=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甄齐才

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值