Branch Blocks (210)

分支块存储原理
本文介绍了分支块存储的基本概念,包括最小键值前缀用于在两个键值间做分支选择及指向包含所需键值的子块指针。文章还讨论了包含n个键值的分支块对应的n+1个指针,以及键值和指针数量如何受到块大小的限制。
Branch blocks store the following: ■ The minimum key prefix needed to make a branching decision between two keys ■ The pointer to the child block containing the key If the blocks have n keys then they have n+1 pointers. The number of keys and pointers is limited by the block size. 分支块 分之块存储以下信息 1. 最小的键值前缀 , 在两个键值之间做出分支选择 2. 指向包含所查找键值的子块的指针 包含n个键值的分支块对应有n+1个指针 。键值和指针数有块大小所限制[@more@]

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/10599713/viewspace-982570/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/10599713/viewspace-982570/

raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for PResNet: Missing key(s) in state_dict: "conv1.conv1_1.conv.weight", "conv1.conv1_1.norm.weight", "conv1.conv1_1.norm.bias", "conv1.conv1_1.norm.running_mean", "conv1.conv1_1.norm.running_var", "conv1.conv1_2.conv.weight", "conv1.conv1_2.norm.weight", "conv1.conv1_2.norm.bias", "conv1.conv1_2.norm.running_mean", "conv1.conv1_2.norm.running_var", "conv1.conv1_3.conv.weight", "conv1.conv1_3.norm.weight", "conv1.conv1_3.norm.bias", "conv1.conv1_3.norm.running_mean", "conv1.conv1_3.norm.running_var", "res_layers.0.blocks.0.branch2a.conv.weight", "res_layers.0.blocks.0.branch2a.norm.weight", "res_layers.0.blocks.0.branch2a.norm.bias", "res_layers.0.blocks.0.branch2a.norm.running_mean", "res_layers.0.blocks.0.branch2a.norm.running_var", "res_layers.0.blocks.0.branch2b.conv.weight", "res_layers.0.blocks.0.branch2b.norm.weight", "res_layers.0.blocks.0.branch2b.norm.bias", "res_layers.0.blocks.0.branch2b.norm.running_mean", "res_layers.0.blocks.0.branch2b.norm.running_var", "res_layers.0.blocks.0.branch2c.conv.weight", "res_layers.0.blocks.0.branch2c.norm.weight", "res_layers.0.blocks.0.branch2c.norm.bias", "res_layers.0.blocks.0.branch2c.norm.running_mean", "res_layers.0.blocks.0.branch2c.norm.running_var", "res_layers.0.blocks.0.short.conv.weight", "res_layers.0.blocks.0.short.norm.weight", "res_layers.0.blocks.0.short.norm.bias", "res_layers.0.blocks.0.short.norm.running_mean", "res_layers.0.blocks.0.short.norm.running_var", "res_layers.0.blocks.1.branch2a.conv.weight", "res_layers.0.blocks.1.branch2a.norm.weight", "res_layers.0.blocks.1.branch2a.norm.bias", "res_layers.0.blocks.1.branch2a.norm.running_mean", "res_layers.0.blocks.1.branch2a.norm.running_var", "res_layers.0.blocks.1.branch2b.conv.weight", "res_layers.0.blocks.1.branch2b.norm.weight", "res_layers.0.blocks.1.branch2b.norm.bias", "res_layers.0.blocks.1.branch2b.norm.running_mean", "res_layers.0.blocks.1.branch2b.norm.running_var", "res_layers.0.blocks.1.branch2c.conv.weight", "res_layers.0.blocks.1.branch2c.norm.weight", "res_layers.0.blocks.1.branch2c.norm.bias", "res_layers.0.blocks.1.branch2c.norm.running_mean", "res_layers.0.blocks.1.branch2c.norm.running_var", "res_layers.0.blocks.2.branch2a.conv.weight", "res_layers.0.blocks.2.branch2a.norm.weight", "res_layers.0.blocks.2.branch2a.norm.bias", "res_layers.0.blocks.2.branch2a.norm.running_mean", "res_layers.0.blocks.2.branch2a.norm.running_var", "res_layers.0.blocks.2.branch2b.conv.weight", "res_layers.0.blocks.2.branch2b.norm.weight", "res_layers.0.blocks.2.branch2b.norm.bias", "res_layers.0.blocks.2.branch2b.norm.running_mean", "res_layers.0.blocks.2.branch2b.norm.running_var", "res_layers.0.blocks.2.branch2c.conv.weight", "res_layers.0.blocks.2.branch2c.norm.weight", "res_layers.0.blocks.2.branch2c.norm.bias", "res_layers.0.blocks.2.branch2c.norm.running_mean", "res_layers.0.blocks.2.branch2c.norm.running_var", "res_layers.1.blocks.0.branch2a.conv.weight", "res_layers.1.blocks.0.branch2a.norm.weight", "res_layers.1.blocks.0.branch2a.norm.bias", "res_layers.1.blocks.0.branch2a.norm.running_mean", "res_layers.1.blocks.0.branch2a.norm.running_var", "res_layers.1.blocks.0.branch2b.conv.weight", "res_layers.1.blocks.0.branch2b.norm.weight", "res_layers.1.blocks.0.branch2b.norm.bias", "res_layers.1.blocks.0.branch2b.norm.running_mean", "res_layers.1.blocks.0.branch2b.norm.running_var", "res_layers.1.blocks.0.branch2c.conv.weight", "res_layers.1.blocks.0.branch2c.norm.weight", "res_layers.1.blocks.0.branch2c.norm.bias", "res_layers.1.blocks.0.branch2c.norm.running_mean", "res_layers.1.blocks.0.branch2c.norm.running_var", "res_layers.1.blocks.0.short.conv.conv.weight", "res_layers.1.blocks.0.short.conv.norm.weight", "res_layers.1.blocks.0.short.conv.norm.bias", "res_layers.1.blocks.0.short.conv.norm.running_mean", "res_layers.1.blocks.0.short.conv.norm.running_var", "res_layers.1.blocks.1.branch2a.conv.weight", "res_layers.1.blocks.1.branch2a.norm.weight", "res_layers.1.blocks.1.branch2a.norm.bias", "res_layers.1.blocks.1.branch2a.norm.running_mean", "res_layers.1.blocks.1.branch2a.norm.running_var", "res_layers.1.blocks.1.branch2b.conv.weight", "res_layers.1.blocks.1.branch2b.norm.weight", "res_layers.1.blocks.1.branch2b.norm.bias", "res_layers.1.blocks.1.branch2b.norm.running_mean", "res_layers.1.blocks.1.branch2b.norm.running_var", "res_layers.1.blocks.1.branch2c.conv.weight", "res_layers.1.blocks.1.branch2c.norm.weight", "res_layers.1.blocks.1.branch2c.norm.bias", "res_layers.1.blocks.1.branch2c.norm.running_mean", "res_layers.1.blocks.1.branch2c.norm.running_var", "res_layers.1.blocks.2.branch2a.conv.weight", "res_layers.1.blocks.2.branch2a.norm.weight", "res_layers.1.blocks.2.branch2a.norm.bias", "res_layers.1.blocks.2.branch2a.norm.running_mean", "res_layers.1.blocks.2.branch2a.norm.running_var", "res_layers.1.blocks.2.branch2b.conv.weight", "res_layers.1.blocks.2.branch2b.norm.weight", "res_layers.1.blocks.2.branch2b.norm.bias", "res_layers.1.blocks.2.branch2b.norm.running_mean", "res_layers.1.blocks.2.branch2b.norm.running_var", "res_layers.1.blocks.2.branch2c.conv.weight", "res_layers.1.blocks.2.branch2c.norm.weight", "res_layers.1.blocks.2.branch2c.norm.bias", "res_layers.1.blocks.2.branch2c.norm.running_mean", "res_layers.1.blocks.2.branch2c.norm.running_var", "res_layers.1.blocks.3.branch2a.conv.weight", "res_layers.1.blocks.3.branch2a.norm.weight", "res_layers.1.blocks.3.branch2a.norm.bias", "res_layers.1.blocks.3.branch2a.norm.running_mean", "res_layers.1.blocks.3.branch2a.norm.running_var", "res_layers.1.blocks.3.branch2b.conv.weight", "res_layers.1.blocks.3.branch2b.norm.weight", "res_layers.1.blocks.3.branch2b.norm.bias", "res_layers.1.blocks.3.branch2b.norm.running_mean", "res_layers.1.blocks.3.branch2b.norm.running_var", "res_layers.1.blocks.3.branch2c.conv.weight", "res_layers.1.blocks.3.branch2c.norm.weight", "res_layers.1.blocks.3.branch2c.norm.bias", "res_layers.1.blocks.3.branch2c.norm.running_mean", "res_layers.1.blocks.3.branch2c.norm.running_var", "res_layers.2.blocks.0.branch2a.conv.weight", "res_layers.2.blocks.0.branch2a.norm.weight", "res_layers.2.blocks.0.branch2a.norm.bias", "res_layers.2.blocks.0.branch2a.norm.running_mean", "res_layers.2.blocks.0.branch2a.norm.running_var", "res_layers.2.blocks.0.branch2b.conv.weight", "res_layers.2.blocks.0.branch2b.norm.weight", "res_layers.2.blocks.0.branch2b.norm.bias", "res_layers.2.blocks.0.branch2b.norm.running_mean", "res_layers.2.blocks.0.branch2b.norm.running_var", "res_layers.2.blocks.0.branch2c.conv.weight", "res_layers.2.blocks.0.branch2c.norm.weight", "res_layers.2.blocks.0.branch2c.norm.bias", "res_layers.2.blocks.0.branch2c.norm.running_mean", "res_layers.2.blocks.0.branch2c.norm.running_var", "res_layers.2.blocks.0.short.conv.conv.weight", "res_layers.2.blocks.0.short.conv.norm.weight", "res_layers.2.blocks.0.short.conv.norm.bias", "res_layers.2.blocks.0.short.conv.norm.running_mean", "res_layers.2.blocks.0.short.conv.norm.running_var", "res_layers.2.blocks.1.branch2a.conv.weight", "res_layers.2.blocks.1.branch2a.norm.weight", "res_layers.2.blocks.1.branch2a.norm.bias", "res_layers.2.blocks.1.branch2a.norm.running_mean", "res_layers.2.blocks.1.branch2a.norm.running_var", "res_layers.2.blocks.1.branch2b.conv.weight", "res_layers.2.blocks.1.branch2b.norm.weight", "res_layers.2.blocks.1.branch2b.norm.bias", "res_layers.2.blocks.1.branch2b.norm.running_mean", "res_layers.2.blocks.1.branch2b.norm.running_var", "res_layers.2.blocks.1.branch2c.conv.weight", "res_layers.2.blocks.1.branch2c.norm.weight", "res_layers.2.blocks.1.branch2c.norm.bias", "res_layers.2.blocks.1.branch2c.norm.running_mean", "res_layers.2.blocks.1.branch2c.norm.running_var", "res_layers.2.blocks.2.branch2a.conv.weight", "res_layers.2.blocks.2.branch2a.norm.weight", "res_layers.2.blocks.2.branch2a.norm.bias", "res_layers.2.blocks.2.branch2a.norm.running_mean", "res_layers.2.blocks.2.branch2a.norm.running_var", "res_layers.2.blocks.2.branch2b.conv.weight", "res_layers.2.blocks.2.branch2b.norm.weight", "res_layers.2.blocks.2.branch2b.norm.bias", "res_layers.2.blocks.2.branch2b.norm.running_mean", "res_layers.2.blocks.2.branch2b.norm.running_var", "res_layers.2.blocks.2.branch2c.conv.weight", "res_layers.2.blocks.2.branch2c.norm.weight", "res_layers.2.blocks.2.branch2c.norm.bias", "res_layers.2.blocks.2.branch2c.norm.running_mean", "res_layers.2.blocks.2.branch2c.norm.running_var", "res_layers.2.blocks.3.branch2a.conv.weight", "res_layers.2.blocks.3.branch2a.norm.weight", "res_layers.2.blocks.3.branch2a.norm.bias", "res_layers.2.blocks.3.branch2a.norm.running_mean", "res_layers.2.blocks.3.branch2a.norm.running_var", "res_layers.2.blocks.3.branch2b.conv.weight", "res_layers.2.blocks.3.branch2b.norm.weight", "res_layers.2.blocks.3.branch2b.norm.bias", "res_layers.2.blocks.3.branch2b.norm.running_mean", "res_layers.2.blocks.3.branch2b.norm.running_var", "res_layers.2.blocks.3.branch2c.conv.weight", "res_layers.2.blocks.3.branch2c.norm.weight", "res_layers.2.blocks.3.branch2c.norm.bias", "res_layers.2.blocks.3.branch2c.norm.running_mean", "res_layers.2.blocks.3.branch2c.norm.running_var", "res_layers.2.blocks.4.branch2a.conv.weight", "res_layers.2.blocks.4.branch2a.norm.weight", "res_layers.2.blocks.4.branch2a.norm.bias", "res_layers.2.blocks.4.branch2a.norm.running_mean", "res_layers.2.blocks.4.branch2a.norm.running_var", "res_layers.2.blocks.4.branch2b.conv.weight", "res_layers.2.blocks.4.branch2b.norm.weight", "res_layers.2.blocks.4.branch2b.norm.bias", "res_layers.2.blocks.4.branch2b.norm.running_mean", "res_layers.2.blocks.4.branch2b.norm.running_var", "res_layers.2.blocks.4.branch2c.conv.weight", "res_layers.2.blocks.4.branch2c.norm.weight", "res_layers.2.blocks.4.branch2c.norm.bias", "res_layers.2.blocks.4.branch2c.norm.running_mean", "res_layers.2.blocks.4.branch2c.norm.running_var", "res_layers.2.blocks.5.branch2a.conv.weight", "res_layers.2.blocks.5.branch2a.norm.weight", "res_layers.2.blocks.5.branch2a.norm.bias", "res_layers.2.blocks.5.branch2a.norm.running_mean", "res_layers.2.blocks.5.branch2a.norm.running_var", "res_layers.2.blocks.5.branch2b.conv.weight", "res_layers.2.blocks.5.branch2b.norm.weight", "res_layers.2.blocks.5.branch2b.norm.bias", "res_layers.2.blocks.5.branch2b.norm.running_mean", "res_layers.2.blocks.5.branch2b.norm.running_var", "res_layers.2.blocks.5.branch2c.conv.weight", "res_layers.2.blocks.5.branch2c.norm.weight", "res_layers.2.blocks.5.branch2c.norm.bias", "res_layers.2.blocks.5.branch2c.norm.running_mean", "res_layers.2.blocks.5.branch2c.norm.running_var", "res_layers.3.blocks.0.branch2a.conv.weight", "res_layers.3.blocks.0.branch2a.norm.weight", "res_layers.3.blocks.0.branch2a.norm.bias", "res_layers.3.blocks.0.branch2a.norm.running_mean", "res_layers.3.blocks.0.branch2a.norm.running_var", "res_layers.3.blocks.0.branch2b.conv.weight", "res_layers.3.blocks.0.branch2b.norm.weight", "res_layers.3.blocks.0.branch2b.norm.bias", "res_layers.3.blocks.0.branch2b.norm.running_mean", "res_layers.3.blocks.0.branch2b.norm.running_var", "res_layers.3.blocks.0.branch2c.conv.weight", "res_layers.3.blocks.0.branch2c.norm.weight", "res_layers.3.blocks.0.branch2c.norm.bias", "res_layers.3.blocks.0.branch2c.norm.running_mean", "res_layers.3.blocks.0.branch2c.norm.running_var", "res_layers.3.blocks.0.short.conv.conv.weight", "res_layers.3.blocks.0.short.conv.norm.weight", "res_layers.3.blocks.0.short.conv.norm.bias", "res_layers.3.blocks.0.short.conv.norm.running_mean", "res_layers.3.blocks.0.short.conv.norm.running_var", "res_layers.3.blocks.1.branch2a.conv.weight", "res_layers.3.blocks.1.branch2a.norm.weight", "res_layers.3.blocks.1.branch2a.norm.bias", "res_layers.3.blocks.1.branch2a.norm.running_mean", "res_layers.3.blocks.1.branch2a.norm.running_var", "res_layers.3.blocks.1.branch2b.conv.weight", "res_layers.3.blocks.1.branch2b.norm.weight", "res_layers.3.blocks.1.branch2b.norm.bias", "res_layers.3.blocks.1.branch2b.norm.running_mean", "res_layers.3.blocks.1.branch2b.norm.running_var", "res_layers.3.blocks.1.branch2c.conv.weight", "res_layers.3.blocks.1.branch2c.norm.weight", "res_layers.3.blocks.1.branch2c.norm.bias", "res_layers.3.blocks.1.branch2c.norm.running_mean", "res_layers.3.blocks.1.branch2c.norm.running_var", "res_layers.3.blocks.2.branch2a.conv.weight", "res_layers.3.blocks.2.branch2a.norm.weight", "res_layers.3.blocks.2.branch2a.norm.bias", "res_layers.3.blocks.2.branch2a.norm.running_mean", "res_layers.3.blocks.2.branch2a.norm.running_var", "res_layers.3.blocks.2.branch2b.conv.weight", "res_layers.3.blocks.2.branch2b.norm.weight", "res_layers.3.blocks.2.branch2b.norm.bias", "res_layers.3.blocks.2.branch2b.norm.running_mean", "res_layers.3.blocks.2.branch2b.norm.running_var", "res_layers.3.blocks.2.branch2c.conv.weight", "res_layers.3.blocks.2.branch2c.norm.weight", "res_layers.3.blocks.2.branch2c.norm.bias", "res_layers.3.blocks.2.branch2c.norm.running_mean", "res_layers.3.blocks.2.branch2c.norm.running_var". Unexpected key(s) in state_dict: "ema".跑rt-detr官方代码报错
最新发布
08-02
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值