c++11 move

Move semantics (Move语义)

这是C++11中所涵盖的另一个重要话题。就这个话题可以写出一系列文章,仅用一个段落来说明显然是不够的。因此在这里我不会过多的深入细节,如果你还不是很熟悉这个话题,我鼓励你去阅读更多地资料。

C++11加入了右值引用(rvalue reference)的概念(用&&标识),用来区分对左值和右值的引用。左值就是一个有名字的对象,而右值则是一个无名对象(临时对象)。move语义允许修改右值(以前右值被看作是不可修改的,等同于const T&类型)。

C++的class或者struct以前都有一些隐含的成员函数:默认构造函数(仅当没有显示定义任何其他构造函数时才存在),拷贝构造函数,析构函数还有拷贝赋值操作符。拷贝构造函数和拷贝赋值操作符提供bit-wise的拷贝(浅拷贝),也就是逐个bit拷贝对象。也就是说,如果你有一个类包含指向其他对象的指针,拷贝时只会拷贝指针的值而不会管指向的对象。在某些情况下这种做法是没问题的,但在很多情况下,实际上你需要的是深拷贝,也就是说你希望拷贝指针所指向的对象。而不是拷贝指针的值。这种情况下,你需要显示地提供拷贝构造函数与拷贝赋值操作符来进行深拷贝。

如果你用来初始化或拷贝的源对象是个右值(临时对象)会怎么样呢?你仍然需要拷贝它的值,但随后很快右值就会被释放。这意味着产生了额外的操作开销,包括原本并不需要的空间分配以及内存拷贝。

现在说说move constructor和move assignment operator。这两个函数接收T&&类型的参数,也就是一个右值。在这种情况下,它们可以修改右值对象,例如“偷走”它们内部指针所指向的对象。举个例子,一个容器的实现(例如vector或者queue)可能包含一个指向元素数组的指针。当用一个临时对象初始化一个对象时,我们不需要分配另一个数组,从临时对象中把值复制过来,然后在临时对象析构时释放它的内存。我们只需要将指向数组内存的指针值复制过来,由此节约了一次内存分配,一次元数组的复制以及后来的内存释放。

以下代码实现了一个简易的buffer。这个buffer有一个成员记录buffer名称(为了便于以下的说明),一个指针(封装在unique_ptr中)指向元素为T类型的数组,还有一个记录数组长度的变量。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
template <typename T>
class Buffer
{
   std::string          _name;
   size_t               _size;
   std::unique_ptr<T[]> _buffer;
 
public:
   // default constructor
   Buffer():
      _size(16),
      _buffer(new T[16])
   {}
 
   // constructor
   Buffer(const std::string& name, size_t size):
      _name(name),
      _size(size),
      _buffer(new T[size])
   {}
 
   // copy constructor
   Buffer(const Buffer& copy):
      _name(copy._name),
      _size(copy._size),
      _buffer(new T[copy._size])
   {
      T* source = copy._buffer.get();
      T* dest = _buffer.get();
      std::copy(source, source + copy._size, dest);
   }
 
   // copy assignment operator
   Buffer& operator=(const Buffer& copy)
   {
      if(this != ©)
      {
         _name = copy._name;
 
         if(_size != copy._size)
         {
            _buffer = nullptr;
            _size = copy._size;
            _buffer = _size > 0 > new T[_size] : nullptr;
         }
 
         T* source = copy._buffer.get();
         T* dest = _buffer.get();
         std::copy(source, source + copy._size, dest);
      }
 
      return *this;
   }
 
   // move constructor
   Buffer(Buffer&& temp):
      _name(std::move(temp._name)),
      _size(temp._size),
      _buffer(std::move(temp._buffer))
   {
      temp._buffer = nullptr;
      temp._size = 0;
   }
 
   // move assignment operator
   Buffer& operator=(Buffer&& temp)
   {
      assert(this != &temp); // assert if this is not a temporary
 
      _buffer = nullptr;
      _size = temp._size;
      _buffer = std::move(temp._buffer);
 
      _name = std::move(temp._name);
 
      temp._buffer = nullptr;
      temp._size = 0;
 
      return *this;
   }
};
 
template <typename T>
Buffer<T> getBuffer(const std::string& name)
{
   Buffer<T> b(name, 128);
   return b;
}
int main()
{
   Buffer<int> b1;
   Buffer<int> b2("buf2", 64);
   Buffer<int> b3 = b2;
   Buffer<int> b4 = getBuffer<int>("buf4");
   b1 = getBuffer<int>("buf5");
   return 0;
}

默认的copy constructor以及copy assignment operator大家应该很熟悉了。C++11中新增的是move constructor以及move assignment operator,这两个函数根据上文所描述的move语义实现。如果你运行这段代码,你就会发现b4构造时,move constructor会被调用。同样,对b1赋值时,move assignment operator会被调用。原因就在于getBuffer()的返回值是一个临时对象——也就是右值。

你也许注意到了,move constuctor中当我们初始化变量name和指向buffer的指针时,我们使用了std::move。name实际上是一个string,std::string实现了move语义。std::unique_ptr也一样。但是如果我们写_name(temp._name),那么copy constructor将会被调用。不过对于_buffer来说不能这么写,因为std::unique_ptr没有copy constructor。但为什么std::string的move constructor此时没有被调到呢?这是因为虽然我们使用一个右值调用了Buffer的move constructor,但在这个构造函数内,它实际上是个左值。为什么?因为它是有名字的——“temp”。一个有名字的对象就是左值。为了再把它变为右值(以便调用move constructor)必须使用std::move。这个函数仅仅是把一个左值引用变为一个右值引用。

更新:虽然这个例子是为了说明如何实现move constructor以及move assignment operator,但具体的实现方式并不是唯一的。在本文的回复中Member 7805758同学提供了另一种可能的实现。为了方便查看,我把它也列在下面:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
template <typename T>
class Buffer
{
   std::string          _name;
   size_t               _size;
   std::unique_ptr<T[]> _buffer;
 
public:
   // constructor
   Buffer(const std::string& name = "", size_t size = 16):
      _name(name),
      _size(size),
      _buffer(size? new T[size] : nullptr)
   {}
 
   // copy constructor
   Buffer(const Buffer& copy):
      _name(copy._name),
      _size(copy._size),
      _buffer(copy._size? new T[copy._size] : nullptr)
   {
      T* source = copy._buffer.get();
      T* dest = _buffer.get();
      std::copy(source, source + copy._size, dest);
   }
 
   // copy assignment operator
   Buffer& operator=(Buffer copy)
   {
       swap(*this, copy);
       return *this;
   }
 
   // move constructor
   Buffer(Buffer&& temp):Buffer()
   {
      swap(*this, temp);
   }
 
   friend void swap(Buffer& first, Buffer& second) noexcept
   {
       using std::swap;
       swap(first._name  , second._name);
       swap(first._size  , second._size);
       swap(first._buffer, second._buffer);
   }
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值