背包

01背包问题:

                                                                动态规划0-1背包问题

Ø
   问题描述:
   给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装
入背包中物品的总价值最大?
Ø
  对于一种物品,要么装入背包,要么不装。所以对于一种物品的装入状态可以取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题。
                               过程分析
 

    数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6},

     (第0位,置为0,不参与计算,只是便于与后面的下标进行统一,无特别用处,也可不这么处理。)总重量c=10.

Ø背包的最大容量为10,那么在设置数组m大小时,可以设行列值为6和11,那么,对于m(i,j)就表示可选物品为i…n背包容量为j(总重量)时背包中所放物品的最大价值。

 

                                         

 

 





1.递归思想




①例题一:


 


简单背包问题
Time Limit:   1000MS       Memory Limit:   65535KB 
Submissions:   2217       Accepted:   408


 


Description 
设有一个背包可以放入的物品重量为S,现有n件物品,重量分别是w1,w2,w3,…wn。 
问能否从这n件物品中选择若干件放入背包中,使得放入的重量之和正好为S。 
如果有满足条件的选择,则此背包有解,否则此背包问题无解。
  
Input输入数据有多行,包括放入的物品重量为s,物品的件数n,以及每件物品的重量(输入数据均为正整数)
多组测试数据。 
Output对于每个测试实例,若满足条件则输出“YES”,若不满足则输出“NO“ 
Sample Input
20 5
1 3 5 7 9
Sample Output
YES


在该问题中物品质量W[n]和包所能承受的最大重量maxweight都是又用户自己任意定义的,在递归实现的过程中用到一个栈来实现。第i件物品的选择有两种可能:

i. 物品i被选择,这种可能性仅当包含它不会超过方案总重量的限制时才是可行的。选中后。继续递归去考虑其余物品的选择;

ii. 物品i不被选择,这种可能性仅当不包含物品i不满足条件的情况。 现以第一个物品为例,当物品1不被选择,则问题转变为相对于其他物品(2,3,……,n),背包重量仍然为maxweight;若物品1被选择,问题就变为关于最大背包重量为maxweight-w[1]的问题,现设r{maxweight, maxweight-w[1]}为剩余重量的背包问题。 此背包的递归定义为:

True s=0 此候背包问题一定有解

False s<0 总重量不能为负数

False s>0且n<1 物品件数不能为负数

F(s,n-1) s>0且n≧1 所选物品中不包括w[n]时

F(s-w[n],n-1) s>0且n≧1 所选物品中包括w[n]时




复制代码
# include<stdio.h>
# include<string.h>
int date[1005];
int f(int w,int s)
{
    if(w==0) return 1;//正好
    if(w<0||w>0 &&s==0) return 0;
    if(f(w-date[s],s-1)) return 1;//退出来再选下一个 
    return f(w,s-1);//选择下一个
}


int main()
{
 int i,Weight,n;
 while(scanf("%d %d",&Weight,&n)!=EOF)
 {
     memset(date,0,sizeof(date));
 for(i=1;i<=n;i++)
  scanf("%d",&date[i]);
    if(f(Weight,n))
       printf("YES\n");
 else printf("NO\n");
 }
 return 0;
}
}
复制代码
 


2.贪心算法


用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。


每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,


直到把所有数据枚举完,或者不能再添加为止。


复制代码
#include<iostream>
#include<algorithm>
using namespace std;
struct good//表示物品的结构体
{
 double p;//价值
 double w;//重量
 double r;//价值与重量的比
};
good a[2000];
bool bigger(good a,good b)
{
    if(a.r==b.r)return a.w<b.w;
    else return a.r>b.r;
}
int main()
{
double s,value,m;
int i,n;
 cin>>m>>n;//读入包的容量和物品个数
 for (i=0;i<n;i++)
 {
 cin>>a[i].w>>a[i].p;
  a[i].r=a[i].p/a[i].w;
 }
 sort(a,a+n,bigger);//调用sort排序函数,按照价值与重量比和质量排序贪心
 s=0;//包内现存货品的重量
 value=0;//包内现存货品总价值
 for (i=0;i<n;i++)
     if(s+a[i].w<=m)
     {
  value+=a[i].p;
  s+=a[i].w;
     }
cout<<"The total value is "<<value<<endl;//输出结果
 return 0;

复制代码
但仔细想就会发现有个很大的问题,
10 4
5 10
8 16
5 5
10 10
就会出问题,被装进去就不会拿出来,可见“拿来主义”行不通!
接下来介绍另一种算法:动规


 


3.动态规划【正解】


有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
状态转移方程:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的 
伪码:
  for i=1..N 
   for v=V..0 
    f[v]=max{f[v],f[v-c[i]]+w[i]};
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,
价值为f[i-1][v];
如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,
此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。




②例题二:
采药


Time Limit:   1000MS       Memory Limit:   65535KB 
Submissions:   155       Accepted:   50




Description辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?  
Input输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。 
Output输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。 
Sample Input
70 3
71 100
69 1
1 2
Sample Output
3


复制代码
#include<iostream>
# include<cstring>
# define max(a,b) a>b?a:b
using namespace std;
int main()
{


    int dp[101][1001],m,T,w[101],val[101],i,j;
    cin>>T>>m;
    for(i=1;i<=m;i++)
        cin>>w[i]>>val[i];
    memset(dp,0,sizeof(dp));
    for(i=1;i<=m;i++)
     for(j=0;j<=T;j++)//j相当于上面说的V-c[i]
         {
    if(j>=w[i])
        dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+val[i]);//放还是不放的选择
    else dp[i][j]=dp[i-1][j];
     }
     cout<<dp[m][T]<<endl;
     return 0;

复制代码
这里就测试一下,
10 4
5 10
8 16
5 5
10 10






 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值