Given a string S, find the number of different non-empty palindromic subsequences in S, and return that number modulo 10^9 + 7
.
A subsequence of a string S is obtained by deleting 0 or more characters from S.
A sequence is palindromic if it is equal to the sequence reversed.
Two sequences A_1, A_2, ...
and B_1, B_2, ...
are different if there is some i
for which A_i != B_i
.
Example 1:
Input: S = 'bccb' Output: 6 Explanation: The 6 different non-empty palindromic subsequences are 'b', 'c', 'bb', 'cc', 'bcb', 'bccb'. Note that 'bcb' is counted only once, even though it occurs twice.
Example 2:
Input: S = 'abcdabcdabcdabcdabcdabcdabcdabcddcbadcbadcbadcbadcbadcbadcbadcba' Output: 104860361 Explanation: There are 3104860382 different non-empty palindromic subsequences, which is 104860361 modulo 10^9 + 7.
Note:
- The length of
S
will be in the range[1, 1000]
. - Each character
S[i]
will be in the set{'a', 'b', 'c', 'd'}
.
解法1.0
class Solution {
public:
int countPalindromicSubsequences(string S)
{
seq = S;
string s = "";
return cntpalinsub(0, s);
}
int cntpalinsub(int n, string& s)
{
long res = 0;
string t = s + seq[n];
if (n == seq.size() - 1)
{
if (ispalin(s) && !strs.count(s))
{
strs.insert(s);
res += 1;
}
if (ispalin(t) && !strs.count(t))
{
strs.insert(t);
res += 1;
}
return res % mod;
}
res = cntpalinsub(n + 1, s) + cntpalinsub(n + 1, t);
return res % mod;
}
bool ispalin(string& s)
{
if (s.empty()) return false;
string t = s;
reverse(t.begin(), t.end());
return s == t;
}
private:
string seq = "";
set<string> strs;
int mod = 1000000007;
};
解法2.0
参考大神grandyang大神的解法
class Solution {
public:
int countPalindromicSubsequences(string S) {
int n = S.size(), M = 1e9 + 7;
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; ++i) dp[i][i] = 1;
for (int len = 1; len < n; ++len) {
for (int i = 0; i < n - len; ++i) {
int j = i + len;
if (S[i] == S[j]) {
int left = i + 1, right = j - 1;
while (left <= right && S[left] != S[i]) ++left;
while (left <= right && S[right] != S[i]) --right;
if (left > right) {
dp[i][j] = 2 * dp[i + 1][j - 1] + 2 ;
} else if (left == right) {
dp[i][j] = 2 * dp[i + 1][j - 1] + 1 ;
} else {
dp[i][j] = 2 * dp[i + 1][j - 1] - dp[left + 1][right - 1] ;
}
} else {
dp[i][j] = dp[i][j - 1] + dp[i + 1][j] - dp[i + 1][j - 1];
}
dp[i][j] = (dp[i][j] < 0) ? dp[i][j] + M : dp[i][j] % M;
}
}
return dp[0][n - 1];
}
};