We are given a list of (axis-aligned) rectangles. Each rectangle[i] = [x1, y1, x2, y2] , where (x1, y1) are the coordinates of the bottom-left corner, and (x2, y2) are the coordinates of the top-right corner of the ith rectangle.
Find the total area covered by all rectangles in the plane. Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:
Input: [[0,0,2,2],[1,0,2,3],[1,0,3,1]]
Output: 6
Explanation: As illustrated in the picture.
Example 2:
Input: [[0,0,1000000000,1000000000]]
Output: 49
Explanation: The answer is 10^18 modulo (10^9 + 7), which is (10^9)^2 = (-7)^2 = 49.
Note:
1 <= rectangles.length <= 200rectanges[i].length = 40 <= rectangles[i][j] <= 10^9- The total area covered by all rectangles will never exceed
2^63 - 1and thus will fit in a 64-bit signed integer.
解题思路:
没做出来。。参考leetcode大神的解法,真的很巧妙,对求矩形面积很实用 ;
class Solution {
public:
int rectangleArea(vector<vector<int>>& rectangles)
{
set<int> ys ;
long res = 0 , modl = 1000000007 ;
for(auto& rec : rectangles)
{
ys.insert(rec[1]) ;
ys.insert(rec[3]) ;
}
sort(rectangles.begin() , rectangles.end() , [](auto &a , auto &b){return a[0] < b[0] ;}) ;
int prev_y = *ys.begin() ;
for(auto y : ys)
{
long height = y - prev_y ;
long x_start = rectangles.front()[0] ;
long x_end = x_start ;
for(auto &rec : rectangles)
{
if(rec[1] <= prev_y && rec[3] >= y )
{
if(rec[0] > x_end)
{
res = (res + (x_end - x_start) * height ) % modl ;
x_start = rec[0] ;
}
if(rec[2] > x_end)
{
x_end = rec[2] ;
}
}
}
res = (res + (x_end - x_start) * height ) % modl ;
prev_y = y ;
}
return res ;
}
};
解法二:
还有一种线段树的做法。。。

该博客讨论了LeetCode第850题,题目要求计算一组轴对齐矩形在平面上覆盖的总面积,并给出了解题思路,包括一种巧妙的解法和线段树的解决方案。
836

被折叠的 条评论
为什么被折叠?



