csu1569: Wet Tiles

csu1569: Wet Tiles

Time Limit: 6 Sec   Memory Limit: 512 MB

Description

Alice owns a construction company in the town of Norainia, famous for its unusually dry weather. In fact, it only rains a few days per year there. Because of this phenomenon, many residents of Norainia neglect to do roof repairs until leaks occur and ruin their floors. Every year, Alice receives a deluge of calls from residents who need the leaks fixed and floor tiles replaced. While exquisite in appearance, Norainia floor tiles are not very water resistant; once a tile becomes wet, it is ruined and must be replaced. This year, Alice plans to handle the rainy days more efficiently than in past years. She will hire extra contractors to dispatch as soon as the calls come in, so hopefully all leaks can be repaired as soon as possible. For each house call, Alice needs a program to help her determine how many replacement tiles a contractor team will need to bring to complete the job.

For a given house, square floor tiles are arranged in a rectangular grid. Leaks originate from one or more known source locations above specific floor tiles. After the first minute, the tiles immediately below the leaks are ruined. After the second minute, water will have spread to any tile that shares an edge with a previously wet tile. This pattern of spreading water continues for each additional minute. However, the walls of a house restrict the water; if a damaged area hits a wall, the water does not penetrate the wall. We assume there are always four outer walls surrounding the entire house. A house may also have a number of additional “inner” walls; each inner wall is comprised of a connected linear sequence of locations (which may or may not be connected to the outer walls or to each other).

As an example, Figure 1 shows water damage (in gray) that would result from three initial leaks (each marked with a white letter ‘L’) after each of the first five minutes of time. Tiles labeled ‘2’ become wet during the second minute, tiles labeled ‘3’ become wet during the third minute, and so forth. The black areas designate inner walls that restrict the flow of water. Note that after 5 minutes, a total of 75 tiles have been damaged and will need to be replaced. Figures 2 through 4 show other houses that correspond to the example inputs for this problem.

75 wet tiles

这里写图片描述

17 wet tiles

这里写图片描述

4 wet tiles
这里写图片描述

94 wet tiles

这里写图片描述

Input

Each house is described beginning with a line having five integral parameters: X Y T L W. Parameters X and Y designate the dimensions of the rectangular grid, with 1 ≤ X ≤ 1000 and 1 ≤ Y ≤ 1000. The coordinate system is one-indexed, as shown in the earlier figures. Parameter T designates the number of minutes that pass before a team of contractors arrives at a house and stops the leaks, with 1 ≤ T ≤ 200000. The parameter L designates the number of leaks, with 1 ≤ L ≤ 100. Parameter W designates the number of inner walls in the house, 0 ≤ W ≤ 100.

The following 2L integers in the data set, on one or more lines, are distinct (x y) pairs that designate the locations of the L distinct leaks, such that 1 ≤ x ≤ X and 1 ≤ y ≤ Y.

If W > 0, there will be 4W additional integers, on one or more lines, that describe the locations of the walls. For each such wall the four parameters (x1,y1), (x2,y2) describe the locations of two ends of the wall. Each wall replaces a linear sequence of adjoining tiles and is either axis-aligned or intersects both axes at a 45 degree angle. Diagonal walls are modeled as a sequence of cells that would just be touching corner to corner. If the two endpoints of a wall are the same, the wall just occupies the single cell at that location. Walls may intersect with each other, but no leak is over a wall.

There will be one or more houses in the data file and a line with a single integer -1 designates the end of the data set.

Output

For each house, display the total number of tiles that are wet after T minutes.

Sample Input
12 12 5 3 5
2 11 3 3 9 5
1 9 6 9 1 7 4 4 7 1 7 4
10 9 10 12 11 4 12 4

9 7 8 1 3
4 3
2 2 6 6 6 2 2 6 8 2 8 2

6 7 50 1 3
3 4
2 2 2 6 3 6 5 4 5 4 3 2

12 12 5 3 0
2 11 3 3 9 5
-1

Sample Output
75
17
4
94

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <queue>
#define pi acos(-1)
#define MIN 0.0000000001
using namespace std;

int tile[1001][1001];
int X,Y;

void makw (int x1,int y1,int x2,int y2)
{
    int i,j;
    if (x1==x2)
    {
        if (y1>y2) swap(y1,y2);
        for(i=y1;i<=y2;i++)
            tile[x1][i]=2;
        return;
    }
    else if (y1==y2)
    {
        if (x1>x2) swap(x1,x2);
        for(i=x1;i<=x2;i++)
            tile[i][y1]=2;
        return;
    }
    else
    {
        if (x1<x2)
        {
            if (y1<y2)
            {
                for(i=x1,j=y1;i<=x2;i++,j++)
                    tile[i][j]=2;
            }
            else
            {
                for(i=x1,j=y1;i<=x2;i++,j--)
                    tile[i][j]=2;
            }
        }
        else
        {
            if (y1<y2)
            {
                for(i=x1,j=y1;i>=x2;i--,j++)
                    tile[i][j]=2;
            }
            else
            {
                for(i=x1,j=y1;i>=x2;i--,j--)
                    tile[i][j]=2;
            }
        }
    }
}

bool jon(int x,int y)
{
    if (x-1==0) return false;
    if (tile[x-1][y]!=0) return false;
    return true;
}

bool jdown(int x,int y)
{
    if (x+1>X) return false;
    if (tile[x+1][y]!=0) return false;
    return true;
}

bool jleft (int x,int y)
{
    if (y-1==0) return false;
    if (tile[x][y-1]!=0) return false;
    return true;
}

bool jright (int x,int y)
{
    if (y+1>Y) return false;
    if (tile[x][y+1]!=0) return false;
    return true;
}

void print()
{
    int i,j;
    for(i=1;i<=X;i++)
        {
            for(j=1;j<=Y;j++)
                cout<<tile[i][j]<<' ';
            cout<<endl;
        }
    cout<<endl;
}

int main()
{
    //freopen("i.txt","r",stdin);
    int a,b ,T ,L ,W;
    int cases=0;
    int num1,num2;
    int i,j,k,x,y;
    while(cin>>X)
    {
        if (X<0) return 0;
        cin>>Y>>T>>L>>W;
        //cout<<X<<" "<<Y<<' '<<T<<' '<<L<<' '<<W<<endl;
        queue<int> wet;
        wet.empty();
        int l[1000001][2];
        memset(tile,0,sizeof(tile));
        for(i=1;i<=L;i++)
        {
            cin>>x>>y;
            l[i][0]=x,l[i][1]=y;
            tile[x][y]=1;
            wet.push(i);
        }
        while(W--)
        {
            cin>>x>>y>>a>>b;
            makw(x,y,a,b);
            //print();
        }
        int sum=L;
        int num=L;
        T--;
        while(T--)
        {
            for(i=0;i<num;i++)
            {
                int x=wet.front();
                int x1=l[x][0],y1=l[x][1];
                //cout<<x1<<' '<<y1<<endl;
                if (jon(x1,y1))
                {
                    sum++;
                    l[sum][0]=l[x][0]-1;
                    l[sum][1]=l[x][1];
                    wet.push(sum);
                    int x2=l[sum][0],y2=l[sum][1];
                    tile[x2][y2]++;
                    //cout<<x<<'d'<<x2<<' '<<y2<<' '<<sum<<endl;
                }
                if (jdown(x1,y1))
                {
                    sum++;
                    l[sum][0]=l[x][0]+1;
                    l[sum][1]=l[x][1];
                    wet.push(sum);
                    int x2=l[sum][0],y2=l[sum][1];
                    tile[x2][y2]++;
                    //cout<<x<<'d'<<x2<<' '<<y2<<' '<<sum<<endl;
                }
                if (jleft(x1,y1))
                {
                    sum++;
                    l[sum][0]=l[x][0];
                    l[sum][1]=l[x][1]-1;
                    wet.push(sum);
                    int x2=l[sum][0],y2=l[sum][1];
                    tile[x2][y2]++;
                    //cout<<x<<'d'<<x2<<' '<<y2<<' '<<sum<<endl;
                }
                if (jright(x1,y1))
                {
                    sum++;
                    l[sum][0]=l[x][0];
                    l[sum][1]=l[x][1]+1;
                    wet.push(sum);
                    int x2=l[sum][0],y2=l[sum][1];
                    tile[x2][y2]++;
                    //cout<<x<<'d'<<x2<<' '<<y2<<' '<<sum<<endl;
                }
                wet.pop();
            }
            num=wet.size();
            //cout<<endl;
            //print();
        }
        cout<<sum<<endl;
    }
    return 0;
}
源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值