HDU 4279 - Number

本文详细解析了2012年天津赛区网赛中的一道难题,通过分解函数f(x)并利用数论知识,揭示了解题关键。文章深入探讨了如何将问题转化为更易于解决的形式,包括如何识别奇偶性与平方数的关系,从而得到最终的求解公式。此方法不仅适用于该竞赛题目,也提供了一种通用的数学问题解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2012年天津赛区网赛的题目,想了好久,也没能想出来

还是小杰思路敏捷,给我讲解了一番,才让我把这个题做出来

f(x)=x-phi(x)(1——x与x互素个数)-g(x)(x的因子个数)+1

其中g(x)为multiply(q(i)+1),x=multiply(p(i)^q(i))(p(i)为所有素因子)

打表可得,phi(x)只有x=2时为奇数,其余全为偶数,而f(2)=0,可以不予考虑

所以,f(x)为odd的时候,x和g(x)模2同余

1、当x为odd时,q(i)+1全为odd,即q(i)必为even,所以x必为odd的平方数

2、当x为even时,q(i)+1全为even,即q(i)必为odd,所以x即为所有even减去even的平方数

最终可得公式 F(0——x)=x/2-2+(x==odd的平方数)

#include <stdio.h>
#include <math.h>
#define LL long long

LL solve(LL x)
{
    if(x<=5)return 0;
    LL ou=x/2-2;
    LL k=sqrt(x);
    LL ans=(k-3+2)/2+ou-(k-4+2)/2;
    return ans;
}

int main()
{
    int T;
    LL x,y;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%I64d%I64d",&x,&y);
        printf("%I64d\n",solve(y)-solve(x-1));
    }

    return 0;
}


### HDU 1466 Problem Description and Solution The problem **HDU 1466** involves calculating the expected number of steps to reach a certain state under specific conditions. The key elements include: #### Problem Statement Given an interactive scenario where operations are performed on numbers modulo \(998244353\), one must determine the expected number of steps required to achieve a particular outcome. For this type of problem, dynamic programming (DP) is often employed as it allows breaking down complex problems into simpler subproblems that can be solved iteratively or recursively with memoization techniques[^1]. In more detail, consider the constraints provided by similar problems such as those found in references like HDU 6327 which deals with random sequences using DP within given bounds \((1 \leq T \leq 10, 4 \leq n \leq 100)\)[^2]. These types of constraints suggest iterative approaches over small ranges might work efficiently here too. Additionally, when dealing with large inputs up to \(2 \times 10^7\) as seen in reference materials related to counting algorithms [^4], efficient data structures and optimization strategies become crucial for performance reasons. However, directly applying these methods requires understanding how they fit specifically into solving the expectation value calculation involved in HDU 1466. For instance, if each step has multiple outcomes weighted differently based on probabilities, then summing products of probability times cost across all possible states until convergence gives us our answer. To implement this approach effectively: ```python MOD = 998244353 def solve_expectation(n): dp = [0] * (n + 1) # Base case initialization depending upon problem specifics for i in range(1, n + 1): total_prob = 0 # Calculate transition probabilities from previous states for j in transitions_from(i): # Placeholder function representing valid moves prob = calculate_probability(j) next_state_cost = get_next_state_cost(j) dp[i] += prob * (next_state_cost + dp[j]) % MOD total_prob += prob dp[i] %= MOD # Normalize current state's expectation due to accumulated probability mass if total_prob != 0: dp[i] *= pow(total_prob, MOD - 2, MOD) dp[i] %= MOD return dp[n] # Example usage would depend heavily on exact rules governing transitions between states. ``` This code snippet outlines a generic framework tailored towards computing expectations via dynamic programming while adhering strictly to modular arithmetic requirements specified by the contest question format.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值