LeetCode 11: Container With Most Water

本文介绍了一个寻找二维平面上两条直线以形成能容纳最多水的容器的算法。此算法利用双指针技巧,从两端向中间逼近,逐步缩小搜索范围,最终找到最优解。时间复杂度为O(n)。

Difficulty: 3

Frequency: 2


Problem:

Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container.


Solution:

class Solution {
public:
    int maxArea(vector<int> &height) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if (height.size()<2)
            return 0;
            
        int i_start = 0, i_end = height.size() - 1;
        int i_area = (height[i_start]<height[i_end]?height[i_start]:height[i_end])*(i_end - i_start);
        int i_temp_area = 0;
        while(i_start<i_end)
        {
            if (height[i_start]<height[i_end])
                ++i_start;
            else
                --i_end;
            
            i_temp_area = (height[i_start]<height[i_end]?height[i_start]:height[i_end])*(i_end - i_start);
            i_area = i_area>i_temp_area?i_area:i_temp_area;
        }
        return i_area;
    }
};


Notes:

Originally, I misunderstood this problem. This algorithm is borrowed from other.

Time complexity is O(n).

Another thing is that when (height[i_start] == height[i_end]), move either i_start or i_end is OK.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值