- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
- 语言环境:Python3.8
- 编译器:jupyter notebook
- 深度学习环境:Pytorch
- 数据:🔗百度网盘(提取码:hqij )(请不要对外公开数据集)
一、 前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU2. 导入数据2. 导入数据
-
import torch import torch.nn as nn #导入一些包 import torchvision.transforms as transforms import torchvision from torchvision import transforms, datasets import os,PIL,pathlib,random #看一些运行的是GPU还是CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device
device(type='cuda') #如果你使用的是GPU
2. 导入数据
-
data_dir = './data/' #我的数据集路径 C:\Users\Dell\data data_dir = pathlib.Path(data_dir) data_paths = list(data_dir.glob('*')) classeNames = [str(path).split("\\")[1] for path in data_paths] classeNames
代码输出
-
['cloudy', 'rain', 'shine', 'sunrise']
- 第一步:使用
pathlib.Path()
函数将字符串类型的文件夹路径转换为pathlib.Path
对象。 - 第二步:使用
glob()
方法获取data_dir
路径下的所有文件路径,并以列表形式存储在data_paths
中。 - 第三步:通过
split()
函数对data_paths
中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
中 - 第四步:打印
classeNames
列表,显示每个文件所属的类别名称。 -
import matplotlib.pyplot as plt from PIL import Image # 指定图像文件夹路径 image_folder = './data/cloudy/' # 获取文件夹中的所有图像文件 image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))] # 创建Matplotlib图像 fig, axes = plt.subplots(3, 8, figsize=(16, 6)) # 使用列表推导式加载和显示图像 for ax, img_file in zip(axes.flat, image_files): img_path = os.path.join(image_folder, img_file) img = Image.open(img_path) ax.imshow(img) ax.axis('off') # 显示图像 plt.tight_layout() plt.show()
-
total_datadir = './data/' # 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863 train_transforms = transforms.Compose([ transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸 transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间 transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛 mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。 ]) total_data = datasets.ImageFolder(total_datadir,transform=train_transforms) total_data
Dataset ImageFolder Number of datapoints: 1125 Root location: ./data/ StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )
3. 划分数据集
-
train_size = int(0.8 * len(total_data)) test_size = len(total_data) - train_size train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size]) train_dataset, test_dataset
代码输出
-
(<torch.utils.data.dataset.Subset at 0x1cd91e01ee0>, <torch.utils.data.dataset.Subset at 0x1cd91e01f70>)
- train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
- test_size表示测试集大小,是总体数据长度减去训练集大小。
-
使用
torch.utils.data.random_split()
方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。 -
train_size,test_size
代码输出
-
(900, 225)
batch_size = 32 train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1) test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
for X, y in test_dl: print("Shape of X [N, C, H, W]: ", X.shape) print("Shape of y: ", y.shape, y.dtype) break
Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64
torch.utils.data.DataLoader
是 PyTorch 中用于加载和管理数据的一个实用工具类。它允许你以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。DataLoader
构造函数接受多个参数,下面是一些常用的参数及其解释: - dataset(必需参数):这是你的数据集对象,通常是
torch.utils.data.Dataset
的子类,它包含了你的数据样本。 - batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。
- shuffle(可选参数):如果设置为
True
,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为False
。 - num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。
- pin_memory(可选参数):如果设置为
True
,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为False
。 - drop_last(可选参数):如果设置为
True
,则在最后一个小批次可能包含样本数小于batch_size
时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为False
。 - timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。
- worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。
-
二、构建简单的CNN网络
-
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类
-
⭐1.
torch.nn.Conv2d()
详解函数原型:
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
关键参数说明:
- in_channels ( int ) – 输入图像中的通道数
- out_channels ( int ) – 卷积产生的通道数
- kernel_size ( int or tuple ) – 卷积核的大小
- stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1
- padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
- padding_mode (字符串,可选) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros'
-
⭐2. torch.nn.Linear()详解
函数原型:
torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
关键参数说明:
- in_features:每个输入样本的大小
- out_features:每个输出样本的大小
-
⭐3. torch.nn.MaxPool2d()详解
函数原型:
torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
关键参数说明:
- kernel_size:最大的窗口大小
- stride:窗口的步幅,默认值为
kernel_size
- padding:填充值,默认为0
- dilation:控制窗口中元素步幅的参数
-
大家注意一下在卷积层和全连接层之间,我们可以使用之前是
torch.flatten()
也可以使用我下面的x.view()
亦或是torch.nn.Flatten()
。torch.nn.Flatten()
与TensorFlow中的Flatten()层
类似,前两者则仅仅是一种数据集拉伸操作(将二维数据拉伸为一维),torch.flatten()
方法不会改变x本身,而是返回一个新的张量。而x.view()
方法则是直接在原有数据上进行操作。 -
网络结构图(可单击放大查看):
-
上面的网络数据shape变化过程为:
3, 224, 224
(输入数据)
->12, 220, 220
(经过卷积层1)
->12, 216, 216
(经过卷积层2)->12, 108, 108
(经过池化层1)
->24, 104, 104
(经过卷积层3)->
24, 100, 100
(经过卷积层4)->24, 50, 50
(经过池化层2)
-> 60000 ->num_classes(4)
请根据【卷积层的计算】与【池化层的计算】这两篇文章手动推导这个过程。
-
import torch.nn.functional as F class Network_bn(nn.Module): def __init__(self): super(Network_bn, self).__init__() """ nn.Conv2d()函数: 第一个参数(in_channels)是输入的channel数量 第二个参数(out_channels)是输出的channel数量 第三个参数(kernel_size)是卷积核大小 第四个参数(stride)是步长,默认为1 第五个参数(padding)是填充大小,默认为0 """ self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn1 = nn.BatchNorm2d(12) self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0) self.bn2 = nn.BatchNorm2d(12) self.pool1 = nn.MaxPool2d(2,2) self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn4 = nn.BatchNorm2d(24) self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0) self.bn5 = nn.BatchNorm2d(24) self.pool2 = nn.MaxPool2d(2,2) self.fc1 = nn.Linear(24*50*50, len(classeNames)) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.pool1(x) x = F.relu(self.bn4(self.conv4(x))) x = F.relu(self.bn5(self.conv5(x))) x = self.pool2(x) x = x.view(-1, 24*50*50) x = self.fc1(x) return x device = "cuda" if torch.cuda.is_available() else "cpu" print("Using {} device".format(device)) model = Network_bn().to(device) model
Using cuda device Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=4, bias=True) )
三、 训练模型
-
1. 设置超参数
-
loss_fn = nn.CrossEntropyLoss() # 创建损失函数 learn_rate = 1e-4 # 学习率 opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
2. 编写训练函数
-
1. optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
2. loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
3. optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。 -
# 训练循环 def train(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset) # 训练集的大小,一共60000张图片 num_batches = len(dataloader) # 批次数目,1875(60000/32) train_loss, train_acc = 0, 0 # 初始化训练损失和正确率 for X, y in dataloader: # 获取图片及其标签 X, y = X.to(device), y.to(device) # 计算预测误差 pred = model(X) # 网络输出 loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失 # 反向传播 optimizer.zero_grad() # grad属性归零 loss.backward() # 反向传播 optimizer.step() # 每一步自动更新 # 记录acc与loss train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() train_loss += loss.item() train_acc /= size train_loss /= num_batches return train_acc, train_loss
3. 编写测试函数
-
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
-
def test (dataloader, model, loss_fn): size = len(dataloader.dataset) # 测试集的大小,一共10000张图片 num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整) test_loss, test_acc = 0, 0 # 当不进行训练时,停止梯度更新,节省计算内存消耗 with torch.no_grad(): for imgs, target in dataloader: imgs, target = imgs.to(device), target.to(device) # 计算loss target_pred = model(imgs) loss = loss_fn(target_pred, target) test_loss += loss.item() test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item() test_acc /= size test_loss /= num_batches return test_acc, test_loss
4. 正式训练
-
1. model.train()
model.train()
的作用是启用 Batch Normalization 和 Dropout。如果模型中有
BN
层(Batch Normalization)和Dropout
,需要在训练时添加model.train()
。model.train()
是保证BN层能够用到每一批数据的均值和方差。对于Dropout
,model.train()
是随机取一部分网络连接来训练更新参数。2. model.eval()
model.eval()
的作用是不启用 Batch Normalization 和 Dropout。如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加
model.eval()
。model.eval()
是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout
,model.eval()
是利用到了所有网络连接,即不进行随机舍弃神经元。 -
训练完train样本后,生成的模型model要用来测试样本。在
model(test)
之前,需要加上model.eval()
,否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。 -
epochs = 20 train_loss = [] train_acc = [] test_loss = [] test_acc = [] for epoch in range(epochs): model.train() epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) model.eval() epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) train_acc.append(epoch_train_acc) train_loss.append(epoch_train_loss) test_acc.append(epoch_test_acc) test_loss.append(epoch_test_loss) template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}') print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss)) print('Done')
输出:
-
Epoch: 1, Train_acc:57.3%, Train_loss:1.039, Test_acc:64.9%,Test_loss:1.011 Epoch: 2, Train_acc:76.7%, Train_loss:0.684, Test_acc:80.9%,Test_loss:0.574 Epoch: 3, Train_acc:81.8%, Train_loss:0.556, Test_acc:85.8%,Test_loss:0.444 Epoch: 4, Train_acc:84.9%, Train_loss:0.493, Test_acc:89.3%,Test_loss:0.411 Epoch: 5, Train_acc:85.6%, Train_loss:0.436, Test_acc:88.4%,Test_loss:0.406 Epoch: 6, Train_acc:87.7%, Train_loss:0.404, Test_acc:88.9%,Test_loss:0.385 Epoch: 7, Train_acc:87.2%, Train_loss:0.453, Test_acc:87.6%,Test_loss:0.483 Epoch: 8, Train_acc:89.6%, Train_loss:0.368, Test_acc:83.6%,Test_loss:0.335 Epoch: 9, Train_acc:89.1%, Train_loss:0.348, Test_acc:92.0%,Test_loss:0.279 Epoch:10, Train_acc:90.4%, Train_loss:0.317, Test_acc:88.9%,Test_loss:0.297 Epoch:11, Train_acc:91.1%, Train_loss:0.329, Test_acc:90.2%,Test_loss:0.645 Epoch:12, Train_acc:91.7%, Train_loss:0.283, Test_acc:91.1%,Test_loss:0.318 Epoch:13, Train_acc:92.1%, Train_loss:0.264, Test_acc:92.4%,Test_loss:0.246 Epoch:14, Train_acc:92.4%, Train_loss:0.252, Test_acc:91.6%,Test_loss:0.245 Epoch:15, Train_acc:91.9%, Train_loss:0.261, Test_acc:90.7%,Test_loss:0.269 Epoch:16, Train_acc:94.9%, Train_loss:0.232, Test_acc:92.0%,Test_loss:0.227 Epoch:17, Train_acc:93.7%, Train_loss:0.226, Test_acc:92.4%,Test_loss:0.290 Epoch:18, Train_acc:93.3%, Train_loss:0.222, Test_acc:89.8%,Test_loss:0.253 Epoch:19, Train_acc:93.8%, Train_loss:0.240, Test_acc:92.9%,Test_loss:0.225 Epoch:20, Train_acc:94.9%, Train_loss:0.206, Test_acc:92.9%,Test_loss:0.363 Done
-
四、 结果可视化
-
import matplotlib.pyplot as plt #隐藏警告 import warnings warnings.filterwarnings("ignore") #忽略警告信息 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.rcParams['figure.dpi'] = 100 #分辨率 epochs_range = range(epochs) plt.figure(figsize=(12, 3)) plt.subplot(1, 2, 1) plt.plot(epochs_range, train_acc, label='Training Accuracy') plt.plot(epochs_range, test_acc, label='Test Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, label='Training Loss') plt.plot(epochs_range, test_loss, label='Test Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show()
-
在b站上看到一个‘手把手带你从0开始搭建CNN卷积神经网络,代码逐行按小白角度讲解’的视频感觉有点用。