总代码
import numpy as np
from nilearn import plotting
n_subjects = 4 # subjects to consider for group-sparse covariance (max: 40)
def plot_matrices(cov, prec, title, labels):
"""Plot covariance and precision matrices, for a given processing. """
prec = prec.copy() # avoid side effects
# Put zeros on the diagonal, for graph clarity.
size = prec.shape[0]
prec[list(range(size)), list(range(size))] = 0
span = max(abs(prec.min()), abs(prec.max()))
# Display covariance matrix
plotting.plot_matrix(cov, cmap=plotting.cm.bwr,
vmin=-1, vmax=1, title="%s / covariance" % title,
labels=labels)
# Display precision matrix
plotting.plot_matrix(prec, cmap=plotting.cm.bwr,
vmin=-span, vmax=span, title="%s / precision" % title,
labels=labels)
第一步 获取数据集
from nilearn import datasets
n_subjects = 4
msdl_atlas_dataset = datasets.fetch_atlas_msdl()
rest_dataset = datasets.fetch_development_fmri(n_subjects=n_subjects)
# print basic information on

该博客介绍了如何使用nilearn库进行神经影像学的数据处理,包括加载MSDL地图集和功能MRI数据,提取ROI时间序列,并计算群稀疏精度矩阵。通过对数据进行稀疏协方差分析,利用GroupSparseCovarianceCV和GraphicalLassoCV估算器,生成了相关性矩阵和功能连接图,展示了不同ROI间的相关性和逆相关性。整个流程涉及数据预处理、模型拟合及结果可视化。
最低0.47元/天 解锁文章
4934

被折叠的 条评论
为什么被折叠?



