- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
- 🚀 文章来源:K同学的学习圈子
目录
一、代码及运行结果
1.前期准备
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
import os,PIL,random,pathlib
data_dir = './5-data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
print(classeNames)
# 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), # 随机水平翻转
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
test_transform = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
train_dataset = datasets.ImageFolder("./5-data/train/",transform=train_transforms)
test_dataset = datasets.ImageFolder("./5-data/test/",transform=train_transforms)
print(train_dataset.class_to_idx)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
['test', 'train'] {'adidas': 0, 'nike': 1} Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64
2.构建简单的CNN网络
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1=nn.Sequential(
nn.Conv2d(3, 12, kernel_size=5, padding=0), # 12*220*220
nn.BatchNorm2d(12),
nn.ReLU())
self.conv2=nn.Sequential(
nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216
nn.BatchNorm2d(12),
nn.ReLU())
self.pool3=nn.Sequential(
nn.MaxPool2d(2)) # 12*108*108
self.conv4=nn.Sequential(
nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104
nn.BatchNorm2d(24),
nn.ReLU())
self.conv5=nn.Sequential(
nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100
nn.BatchNorm2d(24),
nn.ReLU())
self.pool6=nn.Sequential(
nn.MaxPool2d(2)) # 24*50*50
self.dropout = nn.Sequential(
nn.Dropout(0.2))
self.fc=nn.Sequential(
nn.Linear(24*50*50, len(classeNames)))
def forward(self, x):
batch_size = x.size(0)
x = self.conv1(x) # 卷积-BN-激活
x = self.conv2(x) # 卷积-BN-激活
x = self.pool3(x) # 池化
x = self.conv4(x) # 卷积-BN-激活
x = self.conv5(x) # 卷积-BN-激活
x = self.pool6(x) # 池化
x = self.dropout(x)
x = x.view(batch_size, -1) # flatten 变成全连接网络需要的输入 (batch, 24*50*50) ==> (batch, -1), -1 此处自动算出的是24*50*50
x = self.fc(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Model().to(device)
model
Using cuda device
Out[2]:
Model( (conv1): Sequential( (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (conv2): Sequential( (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (pool3): Sequential( (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (conv4): Sequential( (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (conv5): Sequential( (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() ) (pool6): Sequential( (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) ) (dropout): Sequential( (0): Dropout(p=0.2, inplace=False) ) (fc): Sequential( (0): Linear(in_features=60000, out_features=2, bias=True) ) )
3.训练模型
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
def adjust_learning_rate(optimizer, epoch, start_lr):
# 每 2 个epoch衰减到原来的 0.98
lr = start_lr * (0.92 ** (epoch // 2))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
learn_rate = 2e-4 # 初始学习率
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
epochs = 40
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
# 更新学习率(使用自定义学习率时使用)
adjust_learning_rate(optimizer, epoch, learn_rate)
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
# scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前的学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
print('Done')
Epoch: 1, Train_acc:49.6%, Train_loss:1.058, Test_acc:50.0%, Test_loss:0.714, Lr:2.00E-04 Epoch: 2, Train_acc:60.6%, Train_loss:0.817, Test_acc:65.8%, Test_loss:0.643, Lr:2.00E-04 Epoch: 3, Train_acc:67.1%, Train_loss:0.635, Test_acc:69.7%, Test_loss:0.518, Lr:1.84E-04 Epoch: 4, Train_acc:70.3%, Train_loss:0.604, Test_acc:73.7%, Test_loss:0.586, Lr:1.84E-04 Epoch: 5, Train_acc:79.7%, Train_loss:0.462, Test_acc:72.4%, Test_loss:0.524, Lr:1.69E-04 Epoch: 6, Train_acc:80.3%, Train_loss:0.463, Test_acc:75.0%, Test_loss:0.492, Lr:1.69E-04 Epoch: 7, Train_acc:83.9%, Train_loss:0.408, Test_acc:77.6%, Test_loss:0.447, Lr:1.56E-04 Epoch: 8, Train_acc:86.5%, Train_loss:0.379, Test_acc:75.0%, Test_loss:0.484, Lr:1.56E-04 Epoch: 9, Train_acc:88.0%, Train_loss:0.348, Test_acc:76.3%, Test_loss:0.510, Lr:1.43E-04 Epoch:10, Train_acc:90.8%, Train_loss:0.314, Test_acc:78.9%, Test_loss:0.495, Lr:1.43E-04 Epoch:11, Train_acc:92.4%, Train_loss:0.297, Test_acc:76.3%, Test_loss:0.483, Lr:1.32E-04 Epoch:12, Train_acc:92.8%, Train_loss:0.287, Test_acc:78.9%, Test_loss:0.449, Lr:1.32E-04 Epoch:13, Train_acc:94.6%, Train_loss:0.277, Test_acc:80.3%, Test_loss:0.432, Lr:1.21E-04 Epoch:14, Train_acc:93.0%, Train_loss:0.272, Test_acc:77.6%, Test_loss:0.436, Lr:1.21E-04 Epoch:15, Train_acc:94.8%, Train_loss:0.259, Test_acc:78.9%, Test_loss:0.459, Lr:1.12E-04 Epoch:16, Train_acc:97.0%, Train_loss:0.240, Test_acc:80.3%, Test_loss:0.440, Lr:1.12E-04 Epoch:17, Train_acc:95.2%, Train_loss:0.239, Test_acc:78.9%, Test_loss:0.445, Lr:1.03E-04 Epoch:18, Train_acc:95.2%, Train_loss:0.237, Test_acc:78.9%, Test_loss:0.455, Lr:1.03E-04 Epoch:19, Train_acc:97.0%, Train_loss:0.219, Test_acc:78.9%, Test_loss:0.444, Lr:9.44E-05 Epoch:20, Train_acc:96.6%, Train_loss:0.220, Test_acc:78.9%, Test_loss:0.438, Lr:9.44E-05 Epoch:21, Train_acc:96.6%, Train_loss:0.207, Test_acc:78.9%, Test_loss:0.404, Lr:8.69E-05 Epoch:22, Train_acc:96.6%, Train_loss:0.202, Test_acc:78.9%, Test_loss:0.422, Lr:8.69E-05 Epoch:23, Train_acc:98.0%, Train_loss:0.206, Test_acc:78.9%, Test_loss:0.423, Lr:7.99E-05 Epoch:24, Train_acc:97.6%, Train_loss:0.194, Test_acc:78.9%, Test_loss:0.406, Lr:7.99E-05 Epoch:25, Train_acc:98.4%, Train_loss:0.191, Test_acc:77.6%, Test_loss:0.444, Lr:7.35E-05 Epoch:26, Train_acc:97.6%, Train_loss:0.191, Test_acc:81.6%, Test_loss:0.438, Lr:7.35E-05 Epoch:27, Train_acc:97.6%, Train_loss:0.195, Test_acc:80.3%, Test_loss:0.385, Lr:6.77E-05 Epoch:28, Train_acc:98.2%, Train_loss:0.190, Test_acc:80.3%, Test_loss:0.405, Lr:6.77E-05 Epoch:29, Train_acc:98.4%, Train_loss:0.175, Test_acc:81.6%, Test_loss:0.374, Lr:6.22E-05 Epoch:30, Train_acc:98.2%, Train_loss:0.182, Test_acc:80.3%, Test_loss:0.439, Lr:6.22E-05 Epoch:31, Train_acc:98.4%, Train_loss:0.177, Test_acc:80.3%, Test_loss:0.390, Lr:5.73E-05 Epoch:32, Train_acc:97.6%, Train_loss:0.177, Test_acc:80.3%, Test_loss:0.431, Lr:5.73E-05 Epoch:33, Train_acc:98.8%, Train_loss:0.174, Test_acc:80.3%, Test_loss:0.472, Lr:5.27E-05 Epoch:34, Train_acc:98.4%, Train_loss:0.165, Test_acc:80.3%, Test_loss:0.431, Lr:5.27E-05 Epoch:35, Train_acc:98.0%, Train_loss:0.163, Test_acc:80.3%, Test_loss:0.435, Lr:4.85E-05 Epoch:36, Train_acc:98.0%, Train_loss:0.167, Test_acc:80.3%, Test_loss:0.471, Lr:4.85E-05 Epoch:37, Train_acc:98.6%, Train_loss:0.166, Test_acc:80.3%, Test_loss:0.392, Lr:4.46E-05 Epoch:38, Train_acc:98.2%, Train_loss:0.163, Test_acc:81.6%, Test_loss:0.403, Lr:4.46E-05 Epoch:39, Train_acc:97.8%, Train_loss:0.159, Test_acc:81.6%, Test_loss:0.390, Lr:4.10E-05 Epoch:40, Train_acc:98.6%, Train_loss:0.156, Test_acc:81.6%, Test_loss:0.405, Lr:4.10E-05 Done
4.结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
from PIL import Image
classes = list(train_dataset.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./5-data/test/adidas/1.jpg',
model=model,
transform=train_transforms,
classes=classes)
预测结果是:adidas
5.保存并加载模型
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>
二、总结
总结一下提高正确率过程和收获:
本次任务首先是根据K同学提供的代码进行训练,最后训练结果中测试集准确率最高是78%。
然后就想着进行优化:
- 第一次优化,在K同学给的范例模型的基础上,在前面的每次池化层后面又增加了 Dropout。Dropout 层的丢弃率设置为0.3,并去除了全连接层前面的Dropout。40轮后,测试集准确率只达到了77%,还没有修改之前的正确率高。
- 第二次优化,舍弃了第一次优化的改动,将初始学习率设置为2e-4。40轮后,训练集准确率达到了98.6%,测试集准确率达到了81.6%,效果还不错。
在本次的学习中,最大的收获就是获得了许多调整网络结构和各种超参数的经验,让我对CNN网络有了更深的理解。