Datawhale & 天池二手车交易价格预测— Task5 模型融合

本文深入探讨模型融合在机器学习竞赛中的应用,包括简单加权融合、Stacking、Blending等方法,通过实例代码展示了如何有效整合多个模型以提高预测精度。

Datawhale & 天池二手车交易价格预测— Task5 模型融合

1 模型融合目标

对于多种调参完成的模型进行模型融合。

2 内容介绍

模型融合是比赛后期一个重要的环节,大体来说有如下的类型方式。

  1. 简单加权融合:
    回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);分类:投票(Voting);综合:排序融合(Rank averaging),log融合。
  2. stacking/blending:
    构建多层模型,并利用预测结果再拟合预测。
  3. boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):
    多树的提升方法

3 Stacking相关理论介绍

3.1 什么是 stacking

简单来说 stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。
在这里插入图片描述
将个体学习器结合在一起的时候使用的方法叫做结合策略。对于分类问题,我们可以使用投票法来选择输出最多的类。对于回归问题,我们可以将分类器输出的结果求平均值。
上述投票法和平均法都是很有效的结合策略,还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。
在stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器或元学习器(metalearner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。

3.2 如何进行 stacking

算法示意图如下:
在这里插入图片描述

过程1-3 是训练出来个体学习器,也就是初级学习器。
过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。
过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。 ——源自西瓜书

3.3 Stacking的方法讲解

首先,我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。Stacking模型本质上是一种分层的结构,这里简单起见,只分析二级Stacking.假设我们有2个基模型 Model1_1、Model1_2 和 一个次级模型Model2。
在这里插入图片描述
在这里插入图片描述
以上是我们两层堆叠的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。
Stacking有时对于如果训练集和测试集分布不那么一致的情况下是有一点问题的,其问题在于用初始模型训练的标签再利用真实标签进行再训练,毫无疑问会导致一定的模型过拟合训练集,这样或许模型在测试集上的泛化能力或者说效果会有一定的下降,因此现在的问题变成了如何降低再训练的过拟合性,这里我们一般有两种方法,分别是次级模型尽量选择简单的线性模型和利用K折交叉验证。

在这里插入图片描述

3.4 代码参考

1 回归\分类概率-融合:
1)简单加权平均,结果直接融合

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]
# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6]
import numpy as np
import pandas as pd
## 定义结果的加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
return Weighted_
from sklearn import metrics
# 各模型的预测结果计算MAE
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))

Pred1 MAE: 0.175
Pred2 MAE: 0.075
Pred3 MAE: 0.1

## 根据加权计算MAE
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))

Weighted_pre MAE: 0.0575
由上可得,加权结果相对于之前的结果是有提升的,这种我们称其为简单的加权平均。另外还有mean平均,median平均。

## 定义结果的加权平均函数
def Mean_method(test_pre1,test_pre2,test_pre3):
Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1)
return Mean_result
Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))

Mean_pre MAE: 0.0666666666667

## 定义结果的加权平均函数
def Median_method(test_pre1,test_pre2,test_pre3):
Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=
return Median_result
Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))

Median_pre MAE: 0.075
2) Stacking融合(回归):

from sklearn import linear_model
def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,mode
model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=
Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Serie
return Stacking_result
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值