题目大意
给出矩阵中每行每列的和,还有矩阵的每项都是非负整数。求满足这样条件的矩阵总共有多少种。
解题思路
由于一行最多只有3个数,只有125行,设f[i][j][k]为到第i行,第一列填了j,第二列填了k的方案数,直接dp剪一下枝就可以了。
code
#include<cstdio>
#include<algorithm>
#define LL long long
#define min(x,y) ((x<y)?x:y)
#define max(x,y) ((x>y)?x:y)
#define fo(i,j,k) for(int i=j;i<=k;i++)
#define fd(i,j,k) for(int i=j;i>=k;i--)
using namespace std;
int const maxn=125;
int n,a[10],s[maxn+10],ss[maxn+10];
LL ans,f[maxn+10][maxn+10][maxn+10],mod=1e17;
int main(){
freopen("mat.in","r",stdin);
freopen("mat.out","w",stdout);
scanf("%d",&n);int cnt1=0,cnt2=0;
fo(i,1,3)scanf("%d",&a[i]),cnt1+=a[i];
fo(i,1,n)scanf("%d",&s[i]),cnt2+=s[i],ss[i]=ss[i-1]+s[i];
f[0][0][0]=1;
if(cnt1==cnt2){
fo(i,1,n)
fo(j,0,min(a[1],ss[i-1]))
fo(k,max(0,ss[i-1]-a[3]-j),min(a[2],ss[i-1]-j))
if(f[i-1][j][k])
fo(jj,0,min(a[1]-j,ss[i]-ss[i-1]))
fo(kk,max(0,ss[i]-ss[i-1]-jj-(a[3]-(ss[i-1]-j-k))),min(a[2]-k,ss[i]-ss[i-1]-jj))
f[i][j+jj][k+kk]=(f[i][j+jj][k+kk]+f[i-1][j][k])%mod;
}else{
printf("0");
return 0;
}
LL ans=0;
fo(j,0,a[1])fo(k,0,a[2])ans=(ans+f[n][j][k])%mod;
printf("%lld",ans);
return 0;
}